Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/787
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© 2009 Springer-Verlag Berlin Heidelberges
dc.contributor.authorJurado Lucena, A.es
dc.contributor.authorEscot Bocanegra, D.es
dc.contributor.authorPoyatos Martínez, D.es
dc.contributor.authorMontiel, I.es
dc.date.accessioned2022-09-23T09:13:18Z-
dc.date.available2022-09-23T09:13:18Z-
dc.date.issued2009-03-16-
dc.identifier.citationInternational Work Conference on the Interplay between Natural and Artificial Computation: 517-526es
dc.identifier.isbn978-3-642-02263-0-
dc.identifier.isbn978-3-642-02264-7-
dc.identifier.otherhttps://link.springer.com/chapter/10.1007/978-3-642-02264-7_53es
dc.identifier.urihttp://hdl.handle.net/20.500.12666/787-
dc.description.abstractAdequate characterization of materials allows the engineer to select the best option for each application. Apart from mechanical or environmental characterization, last decades’ rise in the exploitation of the electromagnetic spectrum has made increasingly important to understand and explain the behavior of materials also in that ambit. The electromagnetic properties of non-magnetic materials are governed by their intrinsic permittivity or dielectric constant and free-space measurements is one of the various methods employed to estimate this quantity at microwave frequencies. This paper proposes the application of Artificial Neural Networks (ANNs) to extract the dielectric constant of materials from the reflection coefficient obtained by free-space measurements. In this context, two kind of ANNs are examined: Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks. Simulated materials are utilized to train the networks with and without noise and performance is tested using an actual material sample measured by the authors in an anechoic chamber.es
dc.language.isoenges
dc.publisherSpringer Linkes
dc.subjectMaterial characterizationes
dc.subjectComplex permittivityes
dc.subjectFree space measurementses
dc.subjectMultiplayer perceptrones
dc.subjectRadial basis functiones
dc.titleApplication of Artificial Neural Networks to Complex Dielectric Constant Estimation from Free-Space Measurementses
dc.typeinfo:eu-repo/semantics/lecturees
dc.identifier.doi0.1007/978-3-642-02264-7_53-
dc.contributor.funderInstituto Nacional de Técnica Aeroespacial (INTA)es
dc.description.peerreviewedPreprintes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es
Aparece en las colecciones: (Espacio) Comunicaciones de Congresos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
acceso-restringido.pdf221,73 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de Digital.INTA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.