Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/941
Título : Broad-band high-resolution rotational spectroscopy for laboratory astrophysics
Autor : Cernicharo, J.
Gallego, J. D.
López Pérez, Jose A.
Tercero, Felix
Tanarro, I.
Beltrán, F.
De Vicente, P.
Lauwaet, K.
Alemán, Belén
Moreno, E.
Herrero, V. J.
Doménech, Jose Luis
Ramírez, S. I.
Bermúdez, Celina
Peláez, R. J.
Patino Esteban, Marina
López Fernández, Isaac
García Álvaro, Sonia
García Carreño, Pablo
Cabezas, Carlos
Malo, Inmaculada
Amils, R.
Sobrado, J. M.
Díez González, C.
Hernandéz, Jose M.
Tercero, B.
Santoro, G.
Martínez, L.
Castellanos, Marcelo
Vaquero Jiménez, B.
Pardo, Juan R.
Barbas, L.
López Fernández, Jose Antonio
Aja, B.
Leuther, A.
Martín-Gago, J. A.
Palabras clave : Molecular data;Molecular processes;Line: identification;Plasmas;Methods: laboratory: molecular
Fecha de publicación : 7-jun-2019
Editorial : EDP Science
DOI: 10.1051/0004-6361/201935197
Citación : Astronomy and Astrophysics 626: A34(2019)
Resumen : We present a new experimental set-up devoted to the study of gas phase molecules and processes using broad-band high spectral resolution rotational spectroscopy. A reactor chamber is equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole range of the Q (31.5–50 GHz) and W bands (72–116.5 GHz) is available for rotational spectroscopy observations. The receivers are equipped with 16 × 2.5 GHz fast Fourier transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one-third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations, and integration times as long as 2.4 × 105 s have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas, and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by the rotational spectrum, and via mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz, allowing the accurate determination of its rotational and distortion constants and its search in space.
Descripción : ⋆ Tables C.1 and C.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/626/A34
URI : http://hdl.handle.net/20.500.12666/941
E-ISSN : 1432-0746
ISSN : 0004-6361
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
aa35197-19.pdf18,84 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons