Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/98
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.licensePublished by the American Physical Society-
dc.contributor.authorHochberg, David-
dc.contributor.authorRibó, Josep M.-
dc.contributor.otherUnidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737-
dc.date.accessioned2021-03-12T08:40:18Z-
dc.date.available2021-03-12T08:40:18Z-
dc.date.issued2020-12-14-
dc.identifier.citationPhysical Review Research 2: 043367 (2020)es
dc.identifier.otherhttps://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043367-
dc.identifier.urihttp://hdl.handle.net/20.500.12666/98-
dc.description.abstractThe production, exchange, and balance of entropy characterize the thermodynamics of open nonequilibrium systems, ranging from chemical reactions, cells, ecological systems, and Earth-like planets to stars. We generalize the Glansdorff-Prigogine general evolution criterion to constrain the entropy balance in volumetric open-flow chemical reaction systems. We derive a thermodynamic inequality governing the joint evolution of both the internal microreversible reactions and the matter fluxes that the system exchanges with its environment, as exemplified by the distribution of the entropy productions and exchanges over the chemical reaction pathways. We validate this evolution theorem and discuss the physical significance of this pathwise partitioning of the dissipation, for an autocatalytic model capable of spontaneous mirror symmetry breaking.es
dc.description.sponsorshipWith funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)es
dc.language.isoenges
dc.publisherAPS Physicses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEmergencees
dc.subjectAutocatalysises
dc.subjectEntropy Productiones
dc.subjectMirror Symmetry Breakinges
dc.titleThermodynamic evolution theorem for chemical reactionses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1103/PhysRevResearch.2.043367-
dc.identifier.e-issn2643-1564-
dc.description.peerreviewedPeer reviewes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501-
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Thermodynamic evolution theorem for chemical reactions.pdf1,59 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons