Persona: Alonso-Herrero, Almudena
Dirección de correo electrónico
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Centro de Astrobiologia
El Centro de Astrobiología (CAB) es un centro mixto de investigación en astrobiología, dependiente tanto del Instituto Nacional de Técnica Aeroespacial (INTA) como del Consejo Superior de Investigaciones Científicas (CSIC).
Puesto de trabajo
Apellidos
Alonso-Herrero
Nombre de pila
Almudena
Nombre
17 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 17
Publicación Acceso Abierto A proto-pseudobulge in ESO 320-G030 fed by a massive molecular inflow driven by a nuclear bar(EDP Sciences, 2021-01-07) González Alfonso, E.; Pereira Santaella, M.; Fischer, J.; García Burillo, S.; Yang, C.; Alonso-Herrero, Almudena; Colina, L.; Ashby, M. L. N.; Smith, H. A.; Rico Villas, F.; Martín Pintado, J.; Cazzoli, S.; Stewart, F. P.; National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; European Commission (EC); 0000-0001-5285-8517; 0000-0001-6697-7808; 0000-0003-0444-6897; 0000-0002-8117-9991; 0000-0001-6794-2519; 0000-0002-7705-2525; 0000-0001-8266-8298; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Galaxies with nuclear bars are believed to efficiently drive gas inward, generating a nuclear starburst and possibly an active galactic nucleus. We confirm this scenario for the isolated, double-barred, luminous infrared galaxy ESO 320-G030 based on an analysis of Herschel and ALMA spectroscopic observations. Herschel/PACS and SPIRE observations of ESO 320-G030 show absorption or emission in 18 lines of H2O, which we combine with the ALMA H2O 4(23)-3(30) 448 GHz line (E-upper similar to 400 K) and continuum images to study the physical properties of the nuclear region. Radiative transfer models indicate that three nuclear components are required to account for the multi-transition H2O and continuum data. An envelope, with radius R similar to 130-150 pc, dust temperature T-dust approximate to 50 K, and N-H2 similar to 2x10(23) cm(-2), surrounds a nuclear disk with R similar to 40 pc that is optically thick in the far-infrared (tau (100 mu m)similar to 1.5-3, N-H2 similar to 2x10(24) cm(-2)). In addition, an extremely compact (R similar to 12 pc), warm (approximate to 100 K), and buried (tau (100 mu m)> 5, N-H2 greater than or similar to 5x10(24) cm(-2)) core component is required to account for the very high-lying H2O absorption lines. The three nuclear components account for 70% of the galaxy luminosity (SFR similar to 16-18 M-circle dot yr(-1)). The nucleus is fed by a molecular inflow observed in CO 2-1 with ALMA, which is associated with the nuclear bar. With decreasing radius (r=450-225 pc), the mass inflow rate increases up to M-inf similar to 20 M yr(-1), which is similar to the nuclear star formation rate (SFR), indicating that the starburst is sustained by the inflow. At lower r, similar to 100-150 pc, the inflow is best probed by the far-infrared OH ground-state doublets, with an estimated M-inf similar to 30 M yr(-1). The inferred short timescale of similar to 20 Myr for nuclear gas replenishment indicates quick secular evolution, and indicates that we are witnessing an intermediate stage (< 100 Myr) proto-pseudobulge fed by a massive inflow that is driven by a strong nuclear bar. We also apply the H2O model to the Herschel far-infrared spectroscopic observations of H218O, OH, 18OH, OH+, H2O+, H3O+, NH, NH2, NH3, CH, CH+, 13CH+, HF, SH, and C3, and we estimate their abundances.Publicación Acceso Abierto Mid-IR cosmological spectrophotometric surveys from space: Measuring AGN and star formation at the cosmic noon with a SPICA-like mission(Cambridge University Press, 2021-04-23) Spignoglio, L.; Mordini, S.; Fernández Ontiveros, J. A.; Alonso-Herrero, Almudena; Armus, L.; Bisigello, L.; Calura, F.; Carrera, F. J.; Cooray, A.; Dannerbauer, H.; Decarli, R.; Egami, E.; Elbaz, D.; Franceschini, A.; González Alfonso, E.; Graziani, L.; Gruppioni, C.; Hatziminaoglou, Evanthia; Kaneda, H.; Kohno, K.; Labiano, Alvaro; Magdis, Georgios E.; Malkan, M. A.; Matsuhara, H.; Nagao, T.; Naylor, D.; Pereira Santaella, M.; Pozzi, F.; Rodighiero, G.; Roelfsema, Peter; Serjeant, S.; Vignali, C.; Wang, L.; Yamada, T.; Agenzia Spaziale Italiana (ASI); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Spignoglio, L. [0000-0001-8840-1551]; Fernández Ontiveros, J. A. [0000-0001-9490-899X]; Gruppioni, C. [0000-0002-5836-4056]; Graziani, L. [0000-0002-9231-1505]; Unidad de Excelencia Científica María de Maeztu Instituto de Astrofísica de Cantabria, MDM-2017-0765; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1– ) with a mid-IR imaging spectrometer (17– ) in conjunction with deep photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than 2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to . Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17– ), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon ( –3), through IR emission lines and features that are insensitive to the dust obscuration.Publicación Acceso Abierto Physics of ULIRGs with MUSE and ALMA: The PUMA project II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum(EDP Sciences, 2021-07-12) Pereira Santaella, M.; Colina, L.; García Burillo, S.; Lamperti, I.; González Alfonso, E.; Perna, M.; Arribas, Santiago; Alonso-Herrero, Almudena; Aalto, S.; Combes, F.; Labiano, Alvaro; Piqueras López, J.; Rigopoulou, D.; Van der Werf, P. P.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); Science and Technology Facilities Council (STFC); Pereira Santaella, M. [0000-0002-4005-9619]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We analyze new high-resolution (400 pc) ∼220 GHz continuum and CO(2–1) Atacama Large Millimeter Array (ALMA) observations of a representative sample of 23 local (z < 0.165) ultra-luminous infrared systems (ULIRGs; 34 individual nuclei) as part of the “Physics of ULIRGs with MUSE and ALMA” (PUMA) project. The deconvolved half-light radii of the ∼220 GHz continuum sources, rcont, are between < 60 pc and 350 pc (median 80–100 pc). We associate these regions with the regions emitting the bulk of the infrared luminosity (LIR). The good agreement, within a factor of 2, between the observed ∼220 GHz fluxes and the extrapolation of the infrared gray-body as well as the small contributions from synchrotron and free–free emission support this assumption. The cold molecular gas emission sizes, rCO, are between 60 and 700 pc and are similar in advanced mergers and early interacting systems. On average, rCO are ∼2.5 times larger than rcont. Using these measurements, we derived the nuclear LIR and cold molecular gas surface densities (ΣLIR = 1011.5 − 1014.3 L⊙ kpc−2 and ΣH2 = 102.9 − 104.2 M⊙ pc−2, respectively). Assuming that the LIR is produced by star formation, the median ΣLIR corresponds to ΣSFR = 2500 M⊙ yr−1 kpc−2. This ΣSFR implies extremely short depletion times, ΣH2/ΣSFR < 1–15 Myr, and unphysical star formation efficiencies > 1 for 70% of the sample. Therefore, this favors the presence of an obscured active galactic nucleus (AGN) in these objects that could dominate the LIR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (rcont < 120 pc) with high mid-infrared excess emission (ΔL6−20 μm/LIR) found in optically classified AGN; and (b) nuclei following a relation with decreasing ΔL6−20 μm/LIR for decreasing rcont. The majority, 60%, of the nuclei in interacting systems lie in the low-rcont end (<120 pc) of this relation, while this is the case for only 30% of the mergers. This suggests that in the early stages of the interaction, the activity occurs in a very compact and dust-obscured region while, in more advanced merger stages, the activity is more extended, unless an optically detected AGN is present. Approximately two-thirds of the nuclei have nuclear radiation pressures above the Eddington limit. This is consistent with the ubiquitous detection of massive outflows in local ULIRGs and supports the importance of the radiation pressure in the outflow launching process.Publicación Acceso Abierto AGN feedback in the Local Universe: Multiphase outflow of the Seyfert galaxy NGC 5506(EDP Sciences, 2024-06-01) Esposito, Federico; Alonso-Herrero, Almudena; García-Burillo, Santiago; Casasola, Viviana; Combes, Françoise; Dallacasa, Daniele; Davies, Richard; García-Bernete, Ismael; García-Lorenzo, Begoña; Hermosa Muñoz, L.; Peralta de Arriba, L.; Pereira Santaella, Miguel; Pozzi, Francesca; Ramos Almeida, Cristina; Shimizu, Thomas Taro; Vallini, Livia; Bellocchi, Enrica; González-Martín, Omaira; Hicks, Erin K.S.; Hönig, Sebastian; Labiano, Alvaro; Levenson, Nancy A.; Ricci, Claudio; Rosario, David J.; Ministerio de Ciencia e Innovación (MICINN); Universidad Nacional Autónoma de México (UNAM); Science and Technology Facilities Council (STFC); Ministero dell\u2019Istruzione, dell\u2019Università e della Ricerca (MIUR); European Commission (EC); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Istituto Nazionale di Astrofisica (INAF); National Aeronautics and Space Administration (NASA)We present new optical GTC/MEGARA seeing-limited (0.9″) integral-field observations of NGC 5506, together with ALMA observations of the CO(3 - 2) transition at a 0.2″ ( ~25 pc) resolution. NGC 5506 is a luminous (bolometric luminosity of ~1044 erg s-1) nearby (26 Mpc) Seyfert galaxy, part of the Galaxy Activity, Torus, and Outflow Survey (GATOS). We modelled the CO(3 - 2) kinematics with 3DBAROLO, revealing a rotating and outflowing cold gas ring within the central 1.2 kpc. We derived an integrated cold molecular gas mass outflow rate for the ring of ~8 M⊙ yr-1. We fitted the optical emission lines with a maximum of two Gaussian components to separate rotation from non-circular motions. We detected high [OIII]λ5007 projected velocities (up to ~1000 km s-1) at the active galactic nucleus (AGN) position, decreasing with radius to an average ~330 km s-1 around ~350 pc. We also modelled the [OIII] gas kinematics with a non-parametric method, estimating the ionisation parameter and electron density in every spaxel, from which we derived an ionised mass outflow rate of 0.076 M⊙ yr-1 within the central 1.2 kpc. Regions of high CO(3 - 2) velocity dispersion, extending to projected distances of ~350 pc from the AGN, appear to be the result from the interaction of the AGN wind with molecular gas in the galaxy's disc. Additionally, we find the ionised outflow to spatially correlate with radio and soft X-ray emission in the central kiloparsec. We conclude that the effects of AGN feedback in NGC 5506 manifest as a large-scale ionised wind interacting with the molecular disc, resulting in outflows extending to radial distances of 610 pc.Publicación Acceso Abierto Extinction in the 11.2 mu m PAH band and the low L-11.2/L-IR in ULIRGs(Oxford Academics: Blackwell Publishing, 2020-08-05) Hernández Caballero, A.; Spoon, H. W. W.; Alonso-Herrero, Almudena; Hatziminaoglou, Evanthia; Magdis, Georgios E.; Pérez González, Pablo G.; Pereira Santaella, M.; Arribas, Santiago; Cortzen, I.; Labiano, Alvaro; Piqueras López, J.; Rigopoulou, D.; National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Villum Fonden; Danish National Research Foundation (DNRF); Comunidad de Madrid; 0000-0002-4872-2294; 0000-0001-9197-7623; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We present a method for recovering the intrinsic (extinction-corrected) luminosity of the 11.2 mu m PAH band in galaxy spectra. Using 105 high S/N Spitzer/IRS spectra of star-forming galaxies, we show that the equivalent width ratio of the 12.7 and 11.2 mu m PAH bands is independent on the optical depth (tau), with small dispersion (similar to 5 percent) indicative of a nearly constant intrinsic flux ratio R-int = (f(12.7)/f(11.2))(int) = 0.377 +/- 0.020. Conversely, the observed flux ratio, R-obs = (f(12.7)/f(11.2))(obs), strongly correlates with the silicate strength (S-sil) confirming that differences in R-obs reflect variation in tau. The relation between R-obs and S-sil reproduces predictions for the Galactic Centre extinction law but disagrees with other laws. We calibrate the total extinction affecting the 11.2 mu m PAH from R-obs, which we apply to another sample of 215 galaxies with accurate measurements of the total infrared luminosity (L-IR) to investigate the impact of extinction on L-11.2/L-IR. Correlation between L-11.2/L-IR and R-obs independently on L-IR suggests that increased extinction explains the well-known decrease in the average L-11.2/L-IR at high L-IR. The extinction-corrected L-11.2 is proportional to L-IR in the range L-IR = 10(9)-10(13) L-circle dot. These results consolidate L-11.2 as a robust tracer of star formation in galaxies.Publicación Acceso Abierto Polycyclic aromatic hydrocarbon emission in galaxies as seen with JWST(Royal Astronomical Society, 2024-08-01) Rigopoulou, D.; Donnan, F. R.; García-Bernete, I.; Pereira Santaella, Miguel; Alonso-Herrero, Almudena; Davies, R.; Hunt, L. K.; Roche, P. F.; Shimizu, T.; Ministerio de Ciencia e Innovación (MICINN); Science and Technology Facilities Council (STFC)We present a systematic study of mid-infrared spectra of galaxies including star-forming galaxies and active galactic nuclei observed with JWST MIRI-MRS and NIRSpec-IFU. We focus on the relative variations of the 3.3, 6.2, 7.7, 11.3, 12.7, and 17 m polycyclic aromatic hydrocarbon (PAH) features within spatially resolved regions of galaxies including NGC 3256, NGC 7469, VV 114, II Zw96, and NGC 5728. Using theoretical PAH models and extending our earlier work, we introduce a new PAH diagnostic involving the 17 m PAH feature. To determine the drivers of PAH band variations in galaxies, we compare observed PAH spectral bands to predictions from theoretical PAH models. We consider extinction, dehydrogenation, and PAH size and charge as possible drivers of PAH band variations. We find a surprising uniformity in PAH size distribution among the spatially resolved regions of the galaxies studied here, with no evidence for preferential destruction of the smallest grains, contrary to earlier findings. Neither extinction nor dehydrogenation play a crucial role in setting the observed PAH bands. Instead, we find that PAH charge plays a significant role in PAH inter-band variations. We find a tight relation between PAH charge and the intensity of the radiation field as traced by the [Ne iii][Ne ii] maps. In agreement with recent JWST results, we find a predominance of neutral PAH molecules in the nuclei of active galaxies and their outflows. Ionized PAHs are the dominant population in star-forming galaxies. We discuss the implications of our findings for the use of PAHs as ISM tracers in high redshift galaxies.Publicación Acceso Abierto The Galaxy Activity, Torus, and Outflow Survey (GATOS) V. Unveiling PAH survival and resilience in the circumnuclear regions of AGNs with JWST(EDP Sciences, 2024-09-09) García-Bernete, Ismael; Rigopoulou, D.; Donnan, Fergus; Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Shimizu, T. Taro; Davies, Richard; Roche, P. F.; García-Burillo, Santiago; Labiano, Alvaro; Hermosa Muñoz, Laura; Zhang, Lulu; Audibert, A.; Bellocchi, Enrica; Bunker, A.; Combes, Francoise; Delaney, D.; Esparza-Arredondo, D.; Gandhi, P.; González-Martín, O.; Hönig, Sebastian; Imanishi, Masatoshi; Hicks, Erin K. S.; Fuller, L.; Leist, Mason Tanner; Levenson, N. A.; López-Rodríguez, E.; Packham, Christopher; Ramos Almeida, Cristina; Ricci, C.; Stalevski, Marko; Villar Martín, M.; Ward, M. J.; Science and Technology Facilities Council (STFC); Comunidad de Madrid; European Commission (EC); European Space Agency (ESA); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Ministerio de Ciencia e Innovación (MICINN); National Aeronautics and Space Administration (NASA); Space Telescope Science Institute (STScI); Universidad Nacional Autónoma de México (UNAM)This study analyses JWST MIRI/MRS observations of the infrared (IR) polycyclic aromatic hydrocarbon (PAH) bands in the nuclear (∼0.4″ at 11 μm; ∼75 pc) and circumnuclear regions (inner ∼kpc) of local active galactic nuclei (AGNs) from the Galactic Activity, Torus, and Outflow Survey (GATOS). We examine the PAH properties in the circumnuclear regions of AGNs and the projected direction of AGN-outflows and compare them to those in star-forming regions and the innermost regions of AGNs. This study employs 4.9–28.1 μm sub-arcsecond angular resolution data to investigate the properties of PAHs in three nearby sources (DL ∼ 30 − 40 Mpc). Our findings are aligned with previous JWST studies, demonstrating that the central regions of AGNs display a larger fraction of neutral PAH molecules (i.e. elevated 11.3/6.2 and 11.3/7.7 μm PAH ratios) in comparison to star-forming galaxies. We find that AGNs might affect not only the PAH population in the innermost region, but also in the extended regions up to ∼kpc scales. By comparing our observations to PAH diagnostic diagrams, we find that, in general, regions located in the projected direction of the AGN-outflow occupy similar positions on the PAH diagnostic diagrams as those of the innermost regions of AGNs. Star-forming regions that are not affected by the AGNs in these galaxies share the same part of the diagram as star-forming galaxies. We also examined the potential of the PAH-H2 diagram to disentangle AGN-versus-star-forming activity. Our results suggest that in Seyfert-like AGNs, the illumination and feedback from the AGN might affect the PAH population at nuclear and kpc scales, particularly with respect to the ionisation state of the PAH grains. However, PAH molecular sizes are rather similar. The carriers of the ionised PAH bands (6.2 and 7.7 μm) are less resilient than those of neutral PAH bands (11.3 μm), which might be particularly important for strongly AGN-host coupled systems. Therefore, caution must be applied when using PAH bands as star-formation rate indicators in these systems even at kpc scales, with the effects of the AGN being more important for ionised ones.Publicación Acceso Abierto The properties of polycyclic aromatic hydrocarbons in galaxies: constraints on PAH sizes, charge and radiation fields(Oxford Academics: Oxford University Press, 2021-04-12) Rigopoulou, D.; Barale, M.; Clary, D. C.; Shan, X.; Alonso-Herrero, Almudena; García Bernete, I.; Hunt, L.; Berkeni, B.; Pereira Santaella, M.; Roche, P. F.; Science and Technology Facilities Council (STFC); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Based on theoretical spectra computed using Density Functional Theory we study the properties of polycyclic aromatic hydrocarbons (PAH). In particular using bin-average spectra of PAH molecules with varying number of carbons we investigate how the intensity of the mid-infrared emission bands, 3.3, 6.2, 7.7, and 11.3 μm, respond to changes in the number of carbons, charge of the molecule, and the hardness of the radiation field that impinges the molecule. We confirm that the 6.2/7.7 band ratio is a good predictor for the size of the PAH molecule (based on the number of carbons present). We also investigate the efficacy of the 11.3/3.3 ratio to trace the size of PAH molecules and note the dependence of this ratio on the hardness of the radiation field. While the ratio can potentially also be used to trace PAH molecular size, a better understanding of the impact of the underlying radiation field on the 3.3 μm feature and the effect of the extinction on the ratio should be evaluated. The newly developed diagnostics are compared to band ratios measured in a variety of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. We demonstrate that the band ratios can be used to probe the conditions of the interstellar medium in galaxies and differentiate between environments encountered in normal star forming galaxies and active galactic nuclei. Our work highlights the immense potential that PAH observations with the James Webb Space Telescope will have on our understanding of the PAH emission itself and of the physical conditions in galaxies near and far.Publicación Acceso Abierto Searching for molecular gas inflows and outflows in the nuclear regions of five Seyfert galaxies.(EDP Sciences, 2020-11-13) Domínguez Fernández, A. J.; Alonso-Herrero, Almudena; García Burillo, S.; Davies, R. I.; Usero, A.; Labiano, Alvaro; Levenson, N. A.; Pereira Santaella, M.; Imanishi, M.; Ramos Almeida, C.; Rigopoulou, D.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Comunidad de Madrid; Science and Technology Facilities Council (STFC); Ramos Almeida, C. [https://orcid.org/0000-0001-8353-649X]; Davies, R. [https://orcid.org/0000-0003-4949-7217]; Alonso Herrero, A. [https://orcid.org/0000-0001-6794-2519]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Active galactic nucleus (AGN) driven outflows are believed to play an important role in regulating the growth of galaxies, mostly via negative feedback. However, their effects on their hosts are far from clear, especially for low- and moderate-luminosity Seyferts. To investigate this issue, we obtained cold molecular gas observations, traced by the CO(2-1) transition, using the NOEMA interferometer of five nearby (distances between 19 and 58 Mpc) Seyfert galaxies. The resolution of ∼0.3–0.8 (∼30–100 pc) and field of view of NOEMA allowed us to study the CO(2-1) morphology and kinematics in the nuclear regions (∼100 pc) and up to radial distances of ∼900 pc. We detected CO(2-1) emission in all five galaxies with disky or circumnuclear ring-like morphologies. We derived cold molecular gas masses on nuclear (∼100 pc) and circumnuclear (∼650 pc) scales in the range from 106 to 107 M⊙ and from 107 to 108 M⊙, respectively. In all of our galaxies, the bulk of this gas is rotating in the plane of the galaxy. However, noncircular motions are also present. In NGC 4253, NGC 4388, and NGC 7465, we can ascribe the streaming motions to the presence of a large-scale bar. In Mrk 1066 and NGC 4388, the noncircular motions in the nuclear regions are explained as outflowing material due to the interaction of the AGN wind with molecular gas in the galaxy disk. We conclude that for an unambiguous and precise interpretation of the kinematics of the cold molecular gas, we need detailed knowledge of the host galaxy (i.e., presence of bars, interactions, etc.), and also of the ionized gas kinematics and ionization cone geometry.Publicación Acceso Abierto Interactions between large-scale radio structures and gas in a sample of optically selected type 2 quasars(EDP Sciences, 2021-06-10) Villar Martín, M.; Emonts, Bjorn H. C.; Cabrera Lavers, A.; Bellocchi, E.; Storchi Bergmann, T.; Alonso-Herrero, Almudena; Humphrey, A.; Dall´Agnol de Oliveira, B.; Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Fundacao para a Ciencia e a Tecnologia (FCT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The role of radio mode feedback in non radio-loud quasars needs to be explored in depth to determine its true importance. Its effects can be identified based on the evidence of interactions between the radio structures and the ambient ionised gas. Aims. We investigate this interaction in a sample of 13 optically selected type 2 quasars (QSO2) at z < 0.2 with the Very Large Array (VLA) FIRST Survey radio detections, none of which are radio-loud. The ranges of [OIII]λ5007 and monochromatic radio luminosities are log(L[OIII]/erg s−1) ∼ 42.08–42.79 and log(P1.4 GHz/erg s−1 Hz−1) ∼ 30.08−31.76. All of them show complex optical morphologies, with signs of distortion across tens of kpc due to mergers and interactions. Methods. We searched for evidence of interactions between the radio structures and the ionised gas by characterising and comparing their morphologies. The former was traced by narrow band Hα images obtained with the GTC 10.4 m Spanish telescope and the Osiris instrument. The latter is traced by VLA radio maps obtained with A and B configurations to achieve both high resolution and brightness sensitivity. Results. The radio luminosity has an active galatic nucleus (AGN) component in 11 our of 13 QSO2, which is spatially extended in our radio data in 9 of them (jets, lobes, or other). The relative contribution of the extended radio emission to the total P1.4 GHz is in most cases in the range from 30% to 90%. The maximum sizes are in the range of dRmax of around a few to 500 kpc. The QSO2 undergoing interaction or merger events appear to be invariably associated with ionised gas spread over large spatial scales with maximum distances from the AGN in the range rmax ∼ 12−90 kpc. The morphology of the ionised gas at < 30 kpc is strongly influenced by AGN related processes. Evidence for radio-gas interactions exist in 10 out of 13 QSO2; that is, in all but one with confirmed AGN radio components. The interactions are identified across different spatial scales, from the nuclear narrow line region up to tens of kpc. Conclusions. Although this sample cannot be considered representative of the general population of QSO2, it supports the idea that large-scale low to modest power radio sources can exist in radio-quiet QSO2, which can provide a source of feedback on scales of the spheroidal component of galaxies and well into the circumgalactic medium, in systems where radiative mode feedback is expected to dominate.














