Persona: García Parejo, Pilar
Dirección de correo electrónico
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Instituto Nacional de Técnica Aeroespacial
El Instituto Nacional de Técnica Aeroespacial es el Organismo Público de Investigación (OPI) dependiente del Ministerio de Defensa. Además de realizar actividades de investigación científica y de desarrollo de sistemas y prototipos en su ámbito de conocimiento, presta servicios tecnológicos a empresas, universidades e instituciones.
El INTA está especializado en la investigación y el desarrollo tecnológico, de carácter dual, en los ámbitos de la Aeronáutica, Espacio, Hidrodinámica, Seguridad y Defensa.
Puesto de trabajo
Apellidos
García Parejo
Nombre de pila
Pilar
Nombre
6 resultados
Resultados de la búsqueda
Mostrando 1 - 6 de 6
Publicación Acceso Abierto Optimization of the response time measuring method for liquid crystal variable retarders(AIP Publishing, 2019-12-03) Campos Jara, A.; García Parejo, Pilar; Álvarez-Herrrero, Alberto; Álvarez Herrero, A. [https://orcid.org/0000-0001-9228-3412]; García Parejo, P. [https://orcid.org/0000-0003-1556-9411]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Liquid crystal variable retarders (LCVRs) have been extensively used as light polarization modulators for ground-based polarimetric applications. Shortly, LCVRs will be used as polarization state analyzers in two instruments onboard the Solar Orbiter mission of the European Space Agency. Both ground- and space-based polarimeters require LCVR response time values that fulfill the required image acquisition rate of the polarimetric measurements. Therefore, it is necessary to have a reliable method to measure the LCVR optical retardance response times. Response times are usually estimated via optical methods using crossed or parallel polarizers. Nevertheless, these methods measure light intensity transitions to infer the response time instead of directly measuring the changes in the optical retardance. In this work, an experimental setup that uses a Soleil-Babinet variable compensator is proposed. On one hand, this allows one to study the effect of the nonlinear dependence of the light intensity on the optical retardance in the response time determination, which is neglected in most works. On the other hand, the use of the variable compensator allows one to measure the LCVR response times in the highest sensitivity areas of the system that minimizes the uncertainty of the measurement. The six transitions for the Polarimetric and Helioseismic Imager instrument modulation scheme of a representative LCVR have been measured. Based on the results, the optimized conditions to measure response times are found, which can be achieved by using the variable compensator and an IR wavelength (λ = 987.7 nm) as proposed in the experimental setup.Publicación Acceso Abierto Fine tuning method for optimization of liquid crystal based polarimeters(Optica Publishing Group, 2018-04-18) Álvarez-Herrrero, Alberto; García Parejo, Pilar; Silva-López, Manuel; Ministerio de Economía y Competitividad (MINECO)Liquid crystal variable retarders (LCVR) based polarimeters perform temporal polarization modulation by applying a sequence of driving voltages to introduce different optical retardances. However, even after a careful design and fabrication, manufacturing tolerances (i.e., slight optical axis misalignments, instrument residual polarization, optical activity in the LCVRs...) or the final system configuration (i.e., LCVRs in a convergent optical beam, thermal gradient across the clear aperture...) produce deviations from the ideal setup. As a consequence, all of these effects can reduce the polarimetric modulation efficiency of the device and, therefore, its signal-to-noise ratio. Hence, the voltage sequence applied according to the LCVR calibration curves may not be suitable to reach the optimal theoretical polarimetric efficiencies. In this work, a systematic fine tuning method for the LCVRs driving voltages is described an experimentally demonstrated.Publicación Acceso Abierto Evaluation of a liquid crystal based polarization modulator for a space mission thermal environment(Elsevier, 2017-09-21) Silva-López, Manuel; Bastide, L.; Restrepo, R.; García Parejo, Pilar; Álvarez-Herrrero, AlbertoThe Multi Element Telescope for Imaging and Spectroscopy (METIS) is one of the remote sensing instruments to be onboard the future NASA/ESA Solar Orbiter mission. The science nominal mission orbit will take the spacecraft from 0.28 to 0.95 astronomical units from the Sun, setting challenging and variable thermal conditions to its payload. METIS is an inverted-occultation coronagraph that will image the solar corona in the visible and UV wavelength range. In the visible light path a Polarization Modulation Package (PMP) performs a polarimetric analysis of the incoming solar light. This PMP is based on liquid crystal variable retarders (LCVR) and works under a temporal modulation scheme. The LCVRs behavior has a dependence on temperature and, as a consequence, it is critical to guarantee the PMP performance in the mission thermal environment. Key system specifications are the optical quality and the optical retardance homogeneity. Moreover, the thermally induced elastic deformations of the mechanical mounts and the LCVRs shall not produce any performance degradation. A suitable thermal control is hence required to maintain the system within its allowed limits at any time. The PMP shall also be able to reach specific set-points with the power budget allocated. Consequently, and in order to verify the PMP thermal design, we have experimentally reproduced the expected thermal flight environment. Specifically, a thermal-vacuum cycle test campaign is run at the different mission operational conditions. The purpose is both to check the stability of the thermal conditions and to study the optical quality evolution/degradation. Within this test transmitted wavefront measurements and functional verification tests have been carried out. To do that we adapted an optical interrogation scheme, based on a phase shifting interferometric technique, that allows for inspection of the PMP optical aperture. Finally, measurements obtained at non-operational temperature conditions are also shown. These results demonstrate that the device meets the specifications required to perform its operational role in the space mission environment.Publicación Acceso Abierto The Polarimetric and Helioseismic Imager on Solar Orbiter(EDP Sciences, 2020-10) Solanki, S. K.; Álvarez-Herrrero, Alberto; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero Vidriales, Maria; Dávila, B.; Fernández Medina, A.; García Parejo, Pilar; Garranzo García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Nuñez Peral, A.; Royo, M.; Sánchez, A.; Silva López, M.; Vera Trallero, Isabel; Villanueva, J.; Zouganelis, I.; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Centre National D'Etudes Spatiales (CNES); Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe※ I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit.Publicación Restringido Imaging polarimeters based on liquid crystal variable retarders: an emergent technology for space instrumentation(SPIE Optical Engineering Applications, 2011-09-09) Álvarez-Herrrero, Alberto; Uribe Patarroyo, Néstor; García Parejo, Pilar; Vargas, J.; López Heredero, Raquel; Restrepo, R.; Martínez Pillet, V.; Del Toro Iniesta, J. C.; López, A.; Fineschi, S.; Capobianco, G.; Georges, M.; López, M.; Boer, G.; Manolis, I.; López Heredero, R. [0000-0002-2197-8388]; Vargas, J. [0000-0001-7519-6106]; García Parejo, P. [0000-0003-1556-9411]; López Jiménez, A. [0000-0002-6297-0681]; Del Toro Iniesta, J. A. [0000-0002-3387-026X]; Álvarez Herrero, A. [0000-0001-9228-3412]; Capobianco, G. [0000-0003-0520-2528]; Restrepo Gómez, R. [0000-0002-3874-3032]; Georges, M. [0000-0002-0460-3912]; Martínez Pillet, V. [0000-0001-7764-6895]The use of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators are envisaged as a promising novel technique for space instrumentation due to the inherent advantage of eliminating the need for conventional rotary polarizing optics hence the need of mechanisms. LCVRs is a mature technology for ground applications; they are wellknow, already used in polarimeters, and during the last ten years have undergone an important development, driven by the fast expansion of commercial Liquid Crystal Displays. In this work a brief review of the state of the art of imaging polarimeters based on LCVRs is presented. All of them are ground instruments, except the solar magnetograph IMaX which flew in 2009 onboard of a stratospheric balloon as part of the SUNRISE mission payload, since we have no knowledge about other spaceborne polarimeters using liquid crystal up to now. Also the main results of the activity, which was recently completed, with the objective to validate the LCVRs technology for the Solar Orbiter space mission are described. In the aforementioned mission, LCVRs will be utilized in the polarisation modulation package of the instruments SO/PHI (Polarimetric and Helioseismic Imager for Solar Orbiter) and METIS/COR (Multi Element Telescope for Imaging and Spectroscopy, Coronagraph).Publicación Restringido Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs(SPIE Optical Engineering Applications, 2011-10-06) Uribe Patarroyo, Néstor; Álvarez-Herrrero, Alberto; García Parejo, Pilar; Vargas, J.; López Heredero, Raquel; Restrepo, R.; Martínez Pillet, V.; Del Toro Iniesta, J. C.; López, A.; Fineschi, S.; Capobianco, G.; Georges, M.; López, M.; Boer, G.; Manolis, I.; Álvarez Herrero, A. [0000-0001-9228-3412]; Del Toro Iniesta, J. C. [0000-0002-3387-026X]; López Heredero, R. [0000-0002-2197-8388]; Vargas, J. [0000-0001-7519-6106]; López Jiménez, A. [0000-0002-6297-0681]; García Parejo, P. [0000-0003-1556-9411]; Capobianco, G. [0000-0003-0520-2528]; Georges, M. [0000-0002-0460-3912]; Restrepo Gómez, R. [0000-0002-3874-3032]; Martínez Pillet, V. [0000-0001-7764-6895]Liquid-crystal variable retarders (LCVRs) are an emergent technology for space-based polarimeters, following its success as polarization modulators in ground-based polarimeters and ellipsometers. Wide-field double nematic LCVRs address the high angular sensitivity of nematic LCVRs at some voltage regimes. We present a work in which wide-field LCVRs were designed and built, which are suitable for wide-field-of-view instruments such as polarimetric coronagraphs. A detailed model of their angular acceptance was made, and we validated this technology for space environmental conditions, including a campaign studying the effects of gamma, proton irradiation, vibration and shock, thermo-vacuum and ultraviolet radiation.














