Persona:
Mateo Marti, Eva

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Unidad organizativa
Centro de Astrobiologia
El Centro de Astrobiología (CAB) es un centro mixto de investigación en astrobiología, dependiente tanto del Instituto Nacional de Técnica Aeroespacial (INTA) como del Consejo Superior de Investigaciones Científicas (CSIC).

Puesto de trabajo

Apellidos

Mateo Marti

Nombre de pila

Eva

Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 23
  • PublicaciónAcceso Abierto
    An XPS study of HCN-derived films on pyrite surfaces: a prebiotic chemistry standpoint towards the development of protective coatings
    (Royal Society of Chemistry, 2021-06-06) Pérez Fernández, Cristina; Ruiz-Bermejo, Marta; Gálvez Martínez, Santos; Mateo Marti, Eva; Agencia Estatal de Investigación (AEI); 0000-0002-8059-1335; 0000-0003-4709-4676; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Traditionally, the effect of mineral surfaces on increasing molecular complexity has been considered a major issue in studies about the origin of life. In contrast, herein, the effects of organic films derived from cyanide over an important prebiotic mineral, pyrite, are considered. An XPS spectroscopy study was carried out to understand the surface chemistry of the HCN-derived polymer/pyrite system. As a result, the simulation of a plausible prebiotic alkaline hydrothermal environment led to the identification of an NH4CN-based film with protective corrosion properties that immediately prevented the oxidation of the highly reactive pyrite surface. In addition, the effect of coating with antioxidant properties was preserved over a relatively long time, and the polymeric film was very stable under ambient conditions. These results increase the great potential of HCN polymers for development as a cheap and easily produced new class of multifunctional polymeric materials that also show promising and attractive insights into prebiotic chemistry.
  • PublicaciónRestringido
    Bioelectrocatalytic platforms based on chemically modified nanodiamonds by diazonium salt chemistry
    (Elsevier BV, 2020-08-05) Revenga Parra, M.; Villa Manso, A. M.; Briones, C.; Mateo Marti, Eva; Martínez Periñán, E.; Lorenzo, Encarnación; Pariente, F.; Agencia Estatal de Investigación (AEI); Comunidad de Madrid; 0000-0002-0699-7185; 0000-0003-4709-4676; 0000-0003-4709-4676; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Detonation nanodiamonds immobilized onto screen-printed gold electrodes have been modified with a phenothiazine (Azure A) by electrografting of the corresponding in situ generated diazonium salt in acidic medium in the presence of nitrite. The resulting disposable electrochemical platform has been extensively characterized, confirming that is very stable and highly reactive. It shows an excellent electrocatalytic activity towards the oxidation of substances of interest and can be employed to prepare bioelectrocatalytic platforms. Hence, as proof of concept, nicotinamide adenine dinucleotide (NAD+)-dependent alcohol dehydrogenase has been directly immobilized on the Azure A electroactive film to develop an ethanol biosensor based on the measurement of the enzymatically generated β-nicotinamide adenine dinucleotide (NADH). Considering the excellent results obtained, it can be concluded that the modification of electrodes with detonation nanodiamonds can be a good strategy to generate sensing and biosensing electrochemical devices.
  • PublicaciónAcceso Abierto
    Tuning the Morphology in the Nanoscale of NH4CN Polymers Synthesized by Microwave Radiation: A Comparative Study
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021-12-24) Pérez Fernández, Cristina; Valles González, M. P.; González Toril, Elena; Mateo Marti, Eva; de la fuente, Jose Luis; Ruiz-Bermejo, Marta; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    A systematic study is presented to explore the NH4CN polymerization induced by microwave (MW) radiation, keeping in mind the recent growing interest in these polymers in material science. Thus, a first approach through two series, varying the reaction times and the temperatures between 130 and 205 °C, was conducted. As a relevant outcome, using particular reaction conditions, polymer conversions similar to those obtained by means of conventional thermal methods were achieved, with the advantage of a very significant reduction of the reaction times. The structural properties of the end products were evaluated using compositional data, spectroscopic measurements, simultaneous thermal analysis (STA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). As a result, based on the principal component analysis (PCA) from the main experimental results collected, practically only the crystallographic features and the morphologies in the nanoscale were affected by the MW-driven polymerization conditions with respect to those obtained by classical syntheses. Therefore, MW radiation allows us to tune the morphology, size and shape of the particles from the bidimensional C=N networks which are characteristic of the NH4CN polymers by an easy, fast, low-cost and green-solvent production. These new insights make these macromolecular systems attractive for exploration in current soft-matter science.
  • PublicaciónAcceso Abierto
    Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions: experimental and theoretical approaches
    (Royal Society of Chemistry, 2019-10-10) Gálvez Martínez, Santos; Escamilla Roa, E.; Zorzano, María-Paz; Mateo Marti, Eva; Martín Torres, J. [0000-0001-6479-2236]; Zorzano, M. P. [0000-0002-4492-9650]; Mateo Martí, E. [0000-0003-4709-4676]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    The presence of non-stoichiometric sites on the pyrite(100) surface makes it a suitable substrate for driving the chemical evolution of the amino acid glycine over time, even under inert conditions. Spectroscopic molecular fingerprints prove a transition process from a zwitterionic species to an anionic species over time on the monosulfide enriched surface. By combining experimental and theoretical approaches, we propose a surface mechanism where the interaction between the amino acid species and the surface will be driven by the quenching of the surface states at Fe sites and favoured by sulfur vacancies. This study demonstrates the potential capability of pyrite to act as a surface catalyst.
  • PublicaciónAcceso Abierto
    Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids.
    (Nature Research Journals, 2020-09-15) Gil Lozano, C.; Fairén, Alberto G.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Prieto-Ballesteros, Olga; Gago Duport, L.; Losa Adams, E.; Carrizo, D.; Bishop, J. L.; Fornado, Teresa; Mateo Marti, Eva; European Research Council (ERC); Agencia Estatal de Investigación (AEI); European Commission (EC); 0000-0002-5536-2565; 0000-0003-1932-7591; 0000-0002-1159-9093; 0000-0003-3500-2850; 0000-0002-2278-1210; 0000-0002-2646-5995; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as "treated nontronites") under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.
  • PublicaciónRestringido
    Ar+ ion bombardment dictates glycine adsorption on pyrite (1 0 0) surface: X-ray photoemission spectroscopy and DFT approach
    (Elsevier BV, 2020-11-15) Gálvez Martínez, Santos; Escamilla Roa, E.; Zorzano, María-Paz; Mateo Marti, Eva; Agencia Estatal de Investigación (AEI); Zorzano, M. P. [0000-0002-4492-9650]; Unidad de Excelencia Científica María de Maeztu del Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Ar+ ion sputtering on pyrite surfaces leads to the generation of sulfur vacancies and metallic iron. Our research shows that sputtering and annealing processes drive electrostatic changes on the pyrite surface, which play an important role in the molecular adsorption of glycine. While both chemical species (anion and zwitterion) adsorb on a sputtered pyrite surface, the anionic form of glycine is favoured. Nevertheless, in both treatments (sputtered or annealed surfaces), molecules evolve from zwitterionic to anionic species over time. Quantum mechanical calculations based in Density Functional Theory (DFT) suggest the energy required to generate vacancies increases with the number of vacancies produced, and the atomic charge of the Fe atoms that is next to a vacancy increases linearly with the number of vacancies. This leads to enhanced redox processes on the sputtered pyrite surface that favour the adsorption of glycine, which is confirmed experimentally by X-ray Photoemission Spectroscopy (XPS). We have investigated theoretically the efficiency of the adsorption process of the zwitterionic glycine onto vacancies sites: this reaction is exothermic, i.e. is energetically favoured and its energy increases with the number of defects, confirming the increased reactivity observed experimentally. The experiments show a treatment-dependent molecular selectivity of the pyrite surface.
  • PublicaciónRestringido
    HCN-derived polymers from thermally induced polymerization of diaminomaleonitrile: A non-enzymatic peroxide sensor based on prebiotic chemistry
    (Elsevier, 2021-11-24) Ruiz-Bermejo, Marta; García Armada, Pilar; Mateo Marti, Eva; de la fuente, Jose Luis; Ministerio de Ciencia e Innovación (MICINN); Instituto Nacional de Técnica Aeroespacial (INTA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    HCN-derived polymers have recently attracted considerable attention due to their promising applications as multifunctional materials. This study, inspired by plausible early Earth geochemical conditions, describes a strategy to synthesize them from the self-initiated thermal bulk polymerization of the HCN tetramer, diaminomaleonitrile (DAMN), with outstanding sensing properties. These conjugated polymers were obtained through noncatalysed and simple isothermal reactions at 170 °C in the solid-state, and experiments at 190 °C permitted polymerization in the melt. Both processes are highly efficient, allowing quantitative yields of the end products. The conductivity properties of both polymers have been explored to show their high potential, especially DAMN polymers synthesized in melt, as nonenzymatic peroxide sensors. To better understand the differences found between the two series, structural characterisation was carried out using compositional data, Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and X-ray photoelectron (XPS) spectroscopies, and X-ray diffraction (XRD) measurements. The interpretation of the structural data suggests that a two-dimensional (2-D) macrostructure based on N-heterocyclics is predominant regardless of the state of monomer aggregation during the course of polymerization, but preferably formed in the melt. The morphological and thermal stability properties of the polymers based on DAMN were also evaluated. Finally, the most likely mechanisms based on the dehydrocyanation and deamination reactions that take place during the polymerization reaction are proposed. This study demonstrates the robust and straightforward character of these thermally activated polymerizations, which are of interest to chemical evolution research and to current materials and surface science.
  • PublicaciónRestringido
    Silicon Surface Nanostructuring for Covalent Immobilization of Biomolecules
    (ACS Publications, 2008-06-03) Rogero, Celia; Chaffey, Benjamin T.; Mateo Marti, Eva; Sobrado, J. M.; Horrocks, Benjamin R.; Houlton, Andrew; Lakey, Jeremy H.; Briones, C.; Martín Gago, J. A.; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN)
    We present a straightforward strategy to control the average distance of immobilized biomolecules on silicon surfaces. We exploit the reaction taking place between the amino residues within the biomolecules (lysine groups of proteins or the N-terminus of oligomers of peptide nucleic acid, PNA) and the aldehyde-terminated groups presented in a mixed aldehyde/alkyl organic monolayer on a silicon surface. The mixed monolayers were prepared by a thermal reaction of hydrogen-terminated Si(111) with a mixture of undecene and undecenyl-aldehyde. We quantitatively evaluate the surface concentration of aldehyde in the monolayer by atomic force microscopy and an intensity analysis of core level X-ray photoemission spectroscopy peaks. These complementary techniques show that the surface density of the reactive terminal groups reflects the mole fraction of aldehyde in the reactive solution used to modify the silicon surface. The further immobilization of proteins or peptide nucleic acids on the monolayer shows that the density of biomolecules reproduces the aldehyde surface density, which indicates a specific covalent attachment and a negligible nonspecific adsorption. The proposed procedure makes possible to control the average distance of the immobilized active biomolecules on the silicon surface, which could be of great relevance for applications in the interdisciplinary field of biosensors.
  • PublicaciónAcceso Abierto
    Radiometric Calibration Targets for the Mastcam-Z Camera on the Mars 2020 Rover Mission
    (Springer Link, 2020-12-03) Kinch, K. M.; Madsen, M. B.; Bell, J. F.; Maki, Justin N.; Bailey, P.; Hayes, A. G.; Jensen, O. B.; Merusi, M.; Bernt, M. H.; Sorensen, A. N.; Hilverda, M.; Cloutis, E.; Applin, D.; Mateo Marti, Eva; Manrique, J. A.; López Reyes, G.; Bello Arufe, A.; Ehlmann, B. L.; Buz, J.; Pommerol, A.; Thomas, N.; Affolter, L.; Herkenhoff, K. E.; Johnson, J. R.; Rice, M.; Corlies, P.; Tate, C.; Caplinger, M. A.; Jensen, E.; Kubacki, T.; Cisneros, E.; Paris, K.; Winhold, A.; European Research Council (ERC); Kinch, K. [0000-0002-4629-8880]; López Reyes, G. [0000-0003-1005-1760]; Manrique, J. A. [0000-0002-2053-2819]; Affolter, L. [0000-0002-2869-8522]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    The Mastcam-Z Camera is a stereoscopic, multispectral camera with zoom capability on NASA’s Mars-2020 Perseverance rover. The Mastcam-Z relies on a set of two deck-mounted radiometric calibration targets to validate camera performance and to provide an instantaneous estimate of local irradiance and allow conversion of image data to units of reflectance (R∗ or I/F) on a tactical timescale. Here, we describe the heritage, design, and optical characterization of these targets and discuss their use during rover operations. The Mastcam-Z primary calibration target inherits features of camera calibration targets on the Mars Exploration Rovers, Phoenix and Mars Science Laboratory missions. This target will be regularly imaged during flight to accompany multispectral observations of the martian surface. The primary target consists of a gold-plated aluminum base, eight strong hollow-cylinder Sm2Co17 alloy permanent magnets mounted in the base, eight ceramic color and grayscale patches mounted over the magnets, four concentric, ceramic grayscale rings and a central aluminum shadow post (gnomon) painted with an IR-black paint. The magnets are expected to keep the central area of each patch relatively free of Martian aeolian dust. The Mastcam-Z secondary calibration target is a simple angled aluminum shelf carrying seven vertically mounted ceramic color and grayscale chips and seven identical, but horizontally mounted ceramic chips. The secondary target is intended to augment and validate the calibration-related information derived from the primary target. The Mastcam-Z radiometric calibration targets are critically important to achieving Mastcam-Z science objectives for spectroscopy and photometric properties.
  • PublicaciónAcceso Abierto
    Multivariate Analysis Applied to Microwave-Driven Cyanide Polymerization: A Statistical View of a Complex System
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-01-12) Pérez Fernández, Cristina; González Toril, Elena; Mateo Marti, Eva; Ruiz-Bermejo, Marta; Ministerio de Ciencia e Innovación (MICINN)
    For the first time, chemometrics was applied to the recently reported microwave-driven cyanide polymerization. Fast, easy, robust, low-cost, and green-solvent processes are characteristic of these types of reactions. These economic and environmental benefits, originally inspired by the constraints imposed by plausible prebiotic synthetic conditions, have taken advantage of the development of a new generation of HCN-derived multifunctional materials. HCN-derived polymers present tunable properties by temperature and reaction time. However, the apparently random behavior observed in the evolution of cyanide polymerizations, assisted by microwave radiation over time at different temperatures, leads us to study this highly complex system using multivariate analytical tools to have a proper view of the system. Two components are sufficient to explain between 84 and 98% of the total variance in the data in all principal component analyses. In addition, two components explain more than 91% of the total variance in the data in the case of principal component analysis for categorical data. These consistent statistical results indicate that microwave-driven polymerization is a more robust process than conventional thermal syntheses but also that plausible prebiotic chemistry in alkaline subaerial environments could be more complex than in the aerial part of these systems, presenting a clear example of the “messy chemistry” approach of interest in the research about the origins of life. In addition, the methodology discussed herein could be useful for the data analysis of extraterrestrial samples and for the design of soft materials, in a feedback view between prebiotic chemistry and materials science.