Persona: Moral, Andoni G.
Dirección de correo electrónico
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Instituto Nacional de Técnica Aeroespacial
El Instituto Nacional de Técnica Aeroespacial es el Organismo Público de Investigación (OPI) dependiente del Ministerio de Defensa. Además de realizar actividades de investigación científica y de desarrollo de sistemas y prototipos en su ámbito de conocimiento, presta servicios tecnológicos a empresas, universidades e instituciones.
El INTA está especializado en la investigación y el desarrollo tecnológico, de carácter dual, en los ámbitos de la Aeronáutica, Espacio, Hidrodinámica, Seguridad y Defensa.
Puesto de trabajo
Apellidos
Moral
Nombre de pila
Andoni G.
Nombre
6 resultados
Resultados de la búsqueda
Mostrando 1 - 6 de 6
Publicación Acceso Abierto Raman semi-quantification on Mars: ExoMars RLS system as a tool to better comprehend the geological evolution of martian crust(Elsevier BV, 2021-10-13) Veneranda, M.; Manrique, J. A.; García Prieto, C.; Sanz Arranz, Aurelio; Lalla, E.; Kostantinidis, M.; Moral, Andoni G.; Medina García, J.; Rull, F.; Nieto Calzada, L. M.; López Reyes, G.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Redes de Excelencia, SIGUE-Mars: Ciencia e Instrumentación para el estudio de procesos (bio)geoquímicos en marte, RED2018-102600-TThis work presents the latest chemometric tools developed by the RLS science team to optimize the scientific outcome of the Raman system onboard the ExoMars 2022 rover. Feldspar, pyroxene and olivine samples were first analyzed through the RLS ExoMars Simulator to determine the spectroscopic indicators to be used for a proper discrimination of mineral phases on Mars. Being the main components of Martian basaltic rocks, lepidocrocite, augite and forsterite were then used as mineral proxies to prepare binary mixtures. By emulating the operational constraints of the RLS, Raman datasets gathered from laboratory mixtures were used to build external calibration curves. Providing excellent coefficients of determination (R2 0.9942÷0.9997), binary curves were finally used to semi-quantify ternary mixtures of feldspar, pyroxene and olivine minerals. As Raman results are in good agreement with real concentration values, this work suggests the RLS could be effectively used to perform semi-quantitative mineralogical studies of the basaltic geological units found at Oxia Planum. As such, crucial information about the geological evolution of Martian Crust could be extrapolated. In light of the outstanding scientific impact this analytical method could have for the ExoMars mission, further methodological improvements to be discussed in a dedicated work are finally proposed.Publicación Restringido Enhancing Operational Efficiency of the Raman Laser Spectrometer (RLS) in the ExoMars Rosalind Franklin Mission: A Comprehensive Qualitative Analysis of Key Parameters in the Sample Acquisition and Measurement Strategies(Wiley, 2025-06-15) Pérez, Carlos; Moral, Andoni G.; Seoane, Laura; Zafra, Jesús; Rodriguez Perez, Pablo; Benito Parejo, Marina; Rodríguez, J. A.; Canchal, R.; Santamaría, Pilar; López, Iván; Molina, A.; Manrique, J. A.; Veneranda, M.; López Reyes, Guillermo; Prieto-Ballesteros, Olga; Rull, F.; Agencia Estatal de Investigación (España)The Raman Laser Spectrometer (RLS), part of the Pasteur analytical suite onboard the ExoMars 2028 Rosalind Franklin rover, is designed to perform structural and compositional analyses of powdered subsurface samples on Mars. Its fully autonomous operation within the constraints of the Pasteur Analytical Laboratory-limited by time, energy, and sample availability-requires an efficient balance between scientific performance and operational viability. This study presents a qualitative analysis of RLS operations under mission-representative conditions using the Flight Spare (FS) model, focusing on the impact of key parameters-number of accumulations, autofocus frequency, and analyzed spots per sample-on the system's detection capabilities. Experimental campaigns were conducted using ESA-selected analog samples representative of Oxia Planum geology. Performance was evaluated using both the RLS FS and the ExoMars Simulator. Results show high consistency (90-95%) in mineral detection between systems, confirming the robustness of the RLS FS under representative scenarios. The instrument demonstrated its ability to identify key phases, including oxides, silicates, carbonates, hydrated sulfates, and amorphous carbon, highlighting its relevance to geological and astrobiological investigations. Operational tests confirmed that reducing the number of accumulations or autofocus activations-under appropriate sample conditions-does not compromise spectral quality. These findings support a flexible strategy that adapts operational parameters to the scientific context, optimizing resource use and preserving long-term instrument reliability. The results will contribute to the refinement of nominal activity plans for ExoMars and reinforce the use of the RLS FS as a critical asset for validating future configurations of the flight model.Publicación Restringido Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover(Wiley Analytical Science, 2020-01-23) López Reyes, G.; Pilorget, C.; Moral, Andoni G.; Manrique, J. A.; Sanz Arranz, Aurelio; Berrocal, A.; Veneranda, M.; Rull, F.; Medina García, J.; Hamm, V.; Bibring, J. P.; Rodríguez, J. A.; Pérez Canora, C.; Mateo Marti, Eva; Prieto-Ballesteros, Olga; Lalla, E.; Vago, J. L.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); López Reyes, G. [0000-0003-1005-1760]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Manrique, J. A. [0000-0002-2053-2819]; Moral, A. G. [0000-0002-6190-8560]; Venerada, M. [0000-0002-7185-2791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same sample target areas will be investigated using complementary analytical methods—infrared spectrometry, Raman spectrometry, and laser desorption mass spectrometry—to establish mineralogical and organic chemistry composition. Fundamental for implementing this cooperative science strategy is the Raman Laser Spectrometer (RLS) calibration target (CT). The RLS CT features a polyethylene terephthalate disk used for RLS calibration and verification of the instrument during the mission. In addition, special patterns have been recorded on the RLS CT disk that the other instruments can detect and employ to determine their relative position. In this manner, the RLS CT ensures the spatial correlation between the three analytical laboratory instruments: MicrOmega, RLS, and MOMA. The RLS CT has been subjected to a series of tests to qualify it for space utilization and to characterize its behavior during the mission. The results from the joint work performed by the RLS and MicrOmega instrument teams confirm the feasibility of the “combined science” approach envisioned for ExoMars rover operations, whose science return is optimized when complementing the RLS and MicrOmega joint analysis with the autonomous RLS operation.Publicación Acceso Abierto ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman Laser Spectrometer(Nature Research Journals, 2021-01-14) Veneranda, M.; López Reyes, G.; Saiz, J.; Manrique, J. A.; Sanz Arranz, Aurelio; Medina García, J.; Moral, Andoni G.; Seoane, Laura; Ibarmia, S.; Rull, F.; European Research Council (ERC); Agencia Estatal de Investigación (AEI)In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system). The results were later complemented in the laboratory using a bench top RLS operation simulator and a X-Ray diffractometer (XRD). By simulating the operational and analytical constraints of the ExoMars mission, the two RLS representative instruments effectively disclosed the mineralogical composition of the drilled cores (k-feldspar, plagioclase, quartz, muscovite and rutile as main components), reaching the detection of minor phases (e.g., additional phyllosilicate and calcite) whose concentration was below the detection limit of XRD. Furthermore, Raman systems detected many organic functional groups (–C≡N, –NH2 and C–(NO2)), suggesting the presence of nitrogen-fixing microorganisms in the samples. The Raman detection of organic material in the subsurface of a Martian analogue site presenting representative environmental conditions (high UV radiation, extreme aridity), supports the idea that the RLS could play a key role in the fulfilment of the ExoMars main mission objective: to search for signs of life on Mars.Publicación Restringido Raman spectroscopy and planetary exploration: Testing the ExoMars/RLS system at the Tabernas Desert (Spain)(Elsevier BV, 2021-06-12) Veneranda, M.; López Reyes, G.; Manrique, J. A.; Sanz Arranz, Aurelio; Medina García, J.; Pérez, Carlos; Quintana, C.; Moral, Andoni G.; Rodríguez, J. A.; Zafra, Jesús; Nieto Calzada, L. M.; Rull, F.; European Research Council (ERC); Agencia Estatal de Investigación (AEI)ExoFit trials are field campaigns financed by ESA to test the Rosalind Franklin rover and to enhance collaboration practices between ExoMars working groups. During the first trial, a replicate of the ExoMars rover was remotely operated from Oxfordshire (United Kingdom) to perform a complex sequence of scientific operation at the Tabernas Desert (Spain). By following the ExoMars Reference Surface Mission (RSM), the rover investigated the Badlands subsoil and collected drill cores, whose analytical study was entrusted to the RLS (Raman Laser Spectrometer) team. The preliminary characterization of core samples was performed in situ through the RLS Engineering and Qualification Model (EQM-2) and the Raman Demonstrator (RAD1), being this a new, portable emulator of the RLS. In situ results where then complemented by laboratory analysis using the RLS ExoMars simulator and the commercial version of the Curiosity/CheMin XRD system. Raman data, obtained by closely simulating the operational constraints of the mission, successfully disclosed the mineralogical composition of the samples, reaching the detection of minor/trace phases that were not detected by XRD. More importantly, Raman analysis detected many vibrational peaks potentially emitted by organic functional groups, thus suggesting the presence of microorganisms in the arid sub-surface of the Tabernas Desert. In light of the forthcoming ExoMars mission, the results here presented proves that RLS could play a critical role in the characterization of Martian sub-surface environments and in the analytical detection of potential traces of live.Publicación Restringido RLS iOH: ExoMars Raman laser spectrometer optical head bread board to flight model design and performance evolutions(Wiley Analytical Science, 2020-09-01) Ramos, G.; Sanz Palomino, M.; Moral, Andoni G.; Pérez, Carlos; Belenguer Dávila, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; López Reyes, G.; Rull, F.; Ministerio de Economía y Competitividad (MINECO); López Reyes, G. [0000-0003-1005-1760]; Moral, A. G. [0000-0002-6190-8560]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission that will perform Raman spectroscopy for the first time in a planetary space mission. RLS main units are: SPU (SPectrometer Unit), iOH (internal Optical Head), and ICEU (Instrument Control and Excitation Unit), that includes the laser for samples excitation purposes. The iOH focuses the excitation laser into the crushed samples (located at the ALD, Analytical Laboratory Drawer, carrousel) through the excitation path, and collects the Raman emission from the sample (collection path). Its original design presented a high laser trace reaching to the SPU detector, and although a certain level was required for instrument calibration, the found level was expected to be capable of degrading the acquired spectra confounding some Raman peaks. So, the iOH optical and opto‐mechanical designs were needed to be updated from the BB (Bread Board) to the engineering and qualification model (iOH EQM), in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification (AIV) process was carried out. Considering the results obtained during the EQM integration verification and the first functional tests, the RLS calibration target (CT) emission analysis, additional changes were found to be required for the Flight Model, FM. In this paper, the RLS iOH designs and functional tests evolutions for the different models are summarized, focusing on the iOH AIV process and emphasizing on the iOH performance evaluation (by using CT spectra) from the re‐design activities.












