Persona:
López Heredero, Raquel

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Unidad organizativa
Instituto Nacional de Técnica Aeroespacial
El Instituto Nacional de Técnica Aeroespacial es el Organismo Público de Investigación (OPI) dependiente del Ministerio de Defensa. Además de realizar actividades de investigación científica y de desarrollo de sistemas y prototipos en su ámbito de conocimiento, presta servicios tecnológicos a empresas, universidades e instituciones. El INTA está especializado en la investigación y el desarrollo tecnológico, de carácter dual, en los ámbitos de la Aeronáutica, Espacio, Hidrodinámica, Seguridad y Defensa.

Puesto de trabajo

Apellidos

López Heredero

Nombre de pila

Raquel

Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 18
  • PublicaciónAcceso Abierto
    Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Apéstigue, Víctor; Gonzalo Melchor, Alejandro; Jiménez Martín, Juan José; Boland, J.; Lemmon, M. T.; de Mingo Martín, José Ramón; García-Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Martín-Ortega, Alberto; Toledo, D.; Álvarez Ríos, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, Javier; López Heredero, Raquel; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, Margarita; Álvarez, Maite; Manzano, Paula; Martín, J. A.; del Hoyo Gordillo, Juan Carlos; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Hernández, Christina; Córdoba, Elizabeth; Leiter, R.; Thompson, Art; Madsen, Soren N.; Smith, Michael D.; Viúdez Moreiras, Daniel; Saiz López, A.; Sánchez Lavega, Agustín; Gómez Martín, L.; Martínez, Germán M.; Gómez Elvira, J.; Arruego, Ignacio; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)
    The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
  • PublicaciónRestringido
    Micromachined low-finesse Fabry-Perot interferometer for the measurement of DC and AC electrical currents
    (Institute of Electrical and Electronics Engineers, 2003-04-22) López Heredero, Raquel; Santos, J. L.; Fernández de Caleya, R. F.; Guerrero, H.; López Heredero, R. [0000-0002-2197-8388]; Guerrero, H. [0000-0003-2922-3489]; Santos, J. L. [0000-0002-0818-4268]
    A micromachined low finesse Fabry-Perot interferometer for measuring DC and AC electrical current is presented. Interrogation of the microcavity is achieved by a dual-wavelength fiber Bragg grating technique working in quadrature. A linear relation between the DC electrical current and the optical phase defined by the microcavity was detected. Large enhancement of the sensitivity of the microcavities is presented with the use of a planar coil instead of a power line. The sensitivity of the sensor with the planar coil configuration is 7.9 rad/A and resolution of ∼0.18 mA//spl radic/Hz is achieved when the distance between the planar coil and the transducer head is 2 mm. The response of the sensor for AC measurements is 0.14 V/A with a resolution of 6 mA//spl radic/Hz when the distance between the power line and the transducer head is 5.5 cm.
  • PublicaciónRestringido
    Imaging polarimeters based on liquid crystal variable retarders: an emergent technology for space instrumentation
    (SPIE Optical Engineering Applications, 2011-09-09) Álvarez-Herrrero, Alberto; Uribe Patarroyo, Néstor; García Parejo, Pilar; Vargas, J.; López Heredero, Raquel; Restrepo, R.; Martínez Pillet, V.; Del Toro Iniesta, J. C.; López, A.; Fineschi, S.; Capobianco, G.; Georges, M.; López, M.; Boer, G.; Manolis, I.; López Heredero, R. [0000-0002-2197-8388]; Vargas, J. [0000-0001-7519-6106]; García Parejo, P. [0000-0003-1556-9411]; López Jiménez, A. [0000-0002-6297-0681]; Del Toro Iniesta, J. A. [0000-0002-3387-026X]; Álvarez Herrero, A. [0000-0001-9228-3412]; Capobianco, G. [0000-0003-0520-2528]; Restrepo Gómez, R. [0000-0002-3874-3032]; Georges, M. [0000-0002-0460-3912]; Martínez Pillet, V. [0000-0001-7764-6895]
    The use of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators are envisaged as a promising novel technique for space instrumentation due to the inherent advantage of eliminating the need for conventional rotary polarizing optics hence the need of mechanisms. LCVRs is a mature technology for ground applications; they are wellknow, already used in polarimeters, and during the last ten years have undergone an important development, driven by the fast expansion of commercial Liquid Crystal Displays. In this work a brief review of the state of the art of imaging polarimeters based on LCVRs is presented. All of them are ground instruments, except the solar magnetograph IMaX which flew in 2009 onboard of a stratospheric balloon as part of the SUNRISE mission payload, since we have no knowledge about other spaceborne polarimeters using liquid crystal up to now. Also the main results of the activity, which was recently completed, with the objective to validate the LCVRs technology for the Solar Orbiter space mission are described. In the aforementioned mission, LCVRs will be utilized in the polarisation modulation package of the instruments SO/PHI (Polarimetric and Helioseismic Imager for Solar Orbiter) and METIS/COR (Multi Element Telescope for Imaging and Spectroscopy, Coronagraph).
  • PublicaciónRestringido
    Adsorption of water on porous Vycor glass studied by ellipsometry
    (OSA (The Optical Society) Publishing, 2001-02-01) Álvarez-Herrrero, Alberto; López Heredero, Raquel; Bernabeu, E.; Levy, D.; 0000-0002-8462-0156; 0000-0002-2197-8388; 0000-0002-8957-5745; 0000-0001-9228-3412
    The variation of the optical properties of porous Vycor glass (Corning, Model 7930) under different relative-humidity conditions was studied. The adsorption of water into the glass pores was investigated with spectroscopic ellipsometry. The change of the refractive index was Δn ∼ 0.04 between 5% and 90% relative humidity. A linear relation between the ellipsometer parameter tan Ψ, the amount of water adsorbed in the glass pores, and information about the pore-size distributions was established. The results are in accord with the values obtained from N2 isotherms, transmission electron microscope micrographs, and the manufacturer’s specifications (radius of ∼20 Å). The possibility of using this material as a transducer for implementation in a fiber-optic sensor to measure humidity was evaluated.
  • PublicaciónAcceso Abierto
    Effect of Low-Doses of Gamma Radiation on Electric Arc-Induced Long Period Fiber Gratings
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021-03-26) Mesonero Santos, P.; Fernández Medina, A.; Coelho, L. C. C.; Viveiros, D.; Jorge, P. A.; Belenguer Dávila, T.; López Heredero, Raquel; Mesonero Santos, P. [0000-0002-6088-5731]; Fernández Medina, A. [0000-0002-1232-4315]; Coelho, L. C. C. [0000-0001-6205-9479]; Jorge, P. A. [0000-0003-1484-2068]; López Heredero, R. [0000-0002-2197-8388]
    This work presents an experimental study on the effects of gamma radiation on Long Period Fiber Gratings (LPFGs) in a low-dose test campaign to evaluate their eventual degradation. The study was carried out with standard single-mode fibers where the grating was inscribed using the Electric-Arc Discharge (EAD) technique. Before the gamma campaign, a detailed optical characterization was performed with repeatability tests to verify the accuracy of the setup and the associated error sources. The gamma-induced changes up to a dose of 200 krad and the recovery after radiation were monitored with the Dip Wavelength Shift (DWS). The results show that the gamma sensitivity for a total dose of 200 krad is 11 pm/krad and a total DWS of 2.3 nm has been observed with no linear dependence. Post-radiation study shows that recovery from radiation-induced wavelength shift is nearly complete in about 4000 h. Experimental results show that the changes suffered under gamma irradiation of these LPFGs are temporary making them a good choice as sensors in space applications.
  • PublicaciónAcceso Abierto
    In-orbit demonstration of fiber optic sensors based on Bragg gratings
    (International Conference on Space Optics, 2019-07-12) López Heredero, Raquel; Frövel, Malte; Laguna, H.; Belenguer Dávila, T.; Instituto Nacional de Técnica Aeroespacial (INTA); López Heredero, R. [0000000221978388]; Frövel, M. [00000000194474036]
    FIBOS (FIber Bragg gratings for Optical Sensing) is one payload used to monitor temperature and strain during a nanosatellite mission. Description of the payload and in-orbit results are presented. Fiber Bragg Grating (FBG) sensors offer attractive and robust solutions for temperature and pressure monitoring in a spacecraft. Moreover, they can be embedded in composite structures or attached on their surface for structural health monitoring during the entire life cycle of a satellite, from integration and qualification tests, to final operation. FIBOS contains two FBGs to measure temperature and strain during one space mission called OPTOS. The mission, developed by INTA (Instituto Nacional de Técnica Aeroespacial), was a low-cost nanosatellite based on a triple configuration (3U) of the popular Cubesat standard. OPTOS was launched in November 2013 and was operative during two years. Its main goal was to validate and demonstrate the suitability of novel technologies for space applications inside a miniaturized area with big restrictions in terms of mass and power consumption. This work describes the payload components. FIBOS contains commercial off-the-shelf (COTS) parts like a monolithic tunable laser and a conventional InGaAs pigtailed photodiode. The optical sensor head includes two FBGs mounted onto a steel mechanical structure to monitor temperature and strain. Results of the mission are presented. Measurements performed during the operation in-orbit show good agreement with calibration data performed on earth inside a thermalvacuum chamber (TVC). This paper shows a demonstration of a fiber optic sensor based on FBGs in space environment.
  • PublicaciónAcceso Abierto
    The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons
    (Mary Ann Liebert Publishers, 2020-09-15) Fairén, Alberto G.; Gómez Elvira, J.; Briones, C.; Prieto-Ballesteros, Olga; Rodríguez Manfredi, J. A.; López Heredero, Raquel; Belenguer Dávila, T.; Moral, A.; Moreno Paz, Mercedes; Parro, Víctor; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Briones, C. [0000-0003-2213-8353]; Prieto Ballesteros, O. [0000-0002-2278-1210]; López Heredero, R. [0000-0002-2197-8388]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
  • PublicaciónRestringido
    Lithium niobate Fabry-Perot etalons in double-pass configuration for spectral filtering in the visible imager magnetograph IMaX for the SUNRISE mission
    (SPIE Astronomical Telescopes Instrumentation, 2006-06-14) Álvarez-Herrrero, Alberto; Belenguer Dávila, T.; Pastor, C.; López Heredero, Raquel; Ramos, G.; Martínez Pillet, V.; Bonet Navarro, J. A.; López Heredero, R. [0000-0002-2197-8388]; Álvarez Herrero, A. [0000-0001-9228-3412]; Martínez Pillet, V. [0000-0001-7764-6895]; Pastor, C. [0000-0001-9631-9558]
    The Imaging MAgnetograph eXperiment, IMaX, is one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists of a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX should work as a diffraction limited imager and it should be capable to carry out polarization measurements and spectroscopic analysis with high resolution (50.000-100.000 range). The spectral resolution required will be achieved by using a LiNbO3 (z-cut) Fabry-Perot etalon in double pass configuration as spectral filter. Up to our knowledge, few works in the literature describe the associated problems of using these devices in an imager instrument (roughness, off-normal incidence, polarization sensitivity...). Because of that, an extensive and detailed analysis of etalon has been carried out. Special attention has been taken in order to determine the wavefront transmission error produced by the imperfections of a real etalon in double pass configuration working in collimated beam. Different theoretical models, numeric simulations and experimental data are analysed and compared obtaining a complete description of the etalon response.
  • PublicaciónRestringido
    Steam-Resistant Optical Materials for Use in Diagnostic Mirrors for ITER
    (Institute of Electrical and Electronics Engineers, 2020-01-30) Pereira, A.; Martín, P.; López Heredero, Raquel; Torquemada, M. C.; Rodrigo, M. T.; Gómez, L. J.; Vila, R.; Belenguer Dávila, T.; Medrano, M.; Piqueras, J. J.; Le Guern, F.; Pastor, C.; Rodríguez, M. C.; Quintana, J. A.; Carrasco, R.; Lapayese, F.; De la Peña, A.; Alén Cordero, C.; Pereira, A. [0000-0001-7945-6569]
    The need for a steam ingress environmental experiment is very significant to understand the impact of accidental in-vessel coolant leaks at ITER and to study the exposure of optical diagnostics to steam and humid conditions. This could happen as a result of the damage to the cooling pipes due to runaway electrons generated during plasma disruptions in ITER. In order to know the scope of this potential impact, an assessment was carried out to simulate and to study the exposure of optical elements to strong and hostile moisture conditions. After test, different measurements on optical mirrors were performed to characterize the reflectance properties, observed both in the visible and infrared spectral ranges, as well as the analysis of wavefront error, coating adherence test, and X-ray spectroscopy. Modification of properties and fluctuations in the physical behavior of optical materials and components were observed. Substrates and coatings were affected at different levels due to corrosion and oxidative depositions that modify their optical performances. In general, there are large differences in the results obtained for the same material manufactured by different manufacturing processes. Steam and humidity affected, especially substrates and metal coatings. Substrates made of silicon carbide and stainless steel were the least affected by corrosion. Rhodium coating suffered less damage than the molybdenum coating.
  • PublicaciónAcceso Abierto
    The EChO science case
    (Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Sicardy, B.; Kehoe, T.; Deeg, H.; Petrov, R.; Doel, P.; Tennyson, J.; Filacchione, G.; Varley, R.; Temple, J.; Lahav, O.; MacTavish, C.; Wisniowski, T.; Piccioni, G.; Guàrdia, J.; Cavarroc, C.; Jones, G.; Ade, P.; Sanromá, E.; Frith, J.; Lognonné, P.; Pantin, E.; Crook, J.; Colomé, J.; Allard, F.; Azzollini, R.; Burston, R.; Parviainen, H.; Malaguti, G.; Gerard, J. C.; Stamper, R.; Barrado, D.; Maldonado, J.; Morales, J. C.; Yurchenko, S. N.; Lagage, P. O.; Prinja, R.; Koskinen, T.; Waldmann, I.; Venot, O.; Heiter, U.; Lim, T.; Pace, E.; Moya Bedon, A.; Irwin, P.; Michaut, C.; Monteiro, M.; Jones, H.; Wawer, P.; Fouqué, P.; Widemann, T.; Alonso Floriano, F. J.; Eiroa, C.; Savini, G.; Stixrude, L.; Damasso, M.; Rataj, M.; Glasse, A.; Koskinen, T.; Bulgarelli, A.; Ciaravella, A.; Hollis, M.; Schmider, F. X.; Kerschbaum, F.; Licandro Goldaracena, J.; Claret, A.; Rocchetto, M.; López Valverde, Miguel Ángel; Fossey, S.; Leto, G.; Ramos Zapata, G.; Beaulieu, J. P.; Balado, A.; Luzzi, D.; Rebordao, J.; Encrenaz, T.; Adriani, A.; Alcala, J.; Guedel, M.; Morales Calderón, M.; Peña Ramírez, K. Y.; Herrero, Enrique; Focardi, M.; Montalto, M.; Wright, G.; Danielski, C.; Burleigh, M. R.; Medvedev, A.; Murgas Alcaino, F.; Chadney, J.; Bowles, N.; Maxted, Pierre; Kerschbaum, F.; Ward Thompson, D.; Laken, B.; Börne, P.; Christian Jessen, N.; Dominic, C.; López Morales, M.; Miles Paez, P.; Achilleos, N.; Biondi, D.; White, G.; López Heredero, Raquel; De Kok, R.; Frith, J.; Grodent, D.; Rank Lüftinger, T.; Scholz, A.; Villaver, E.; Dobrijévic, M.; Alard, C.; Demangeon, O. D. S.; De Witt, J.; Machado, P.; Cordier, D.; Charnoz, S.; Rodler, F.; Gerard, J. C.; Sousa, S. G.; Viti, S.; Cole, R.; Blecka, M.; Barber, R. J.; Middleton, K.; Griffin, M.; Giro, E.; Cho, J.; Covino, E.; Turrini, D.; Moro Martín, A.; Decin, L.; Ramos, A. A.; Schrader, J. R.; Massi, F.; Abe, L.; Mauskopf, P.; Batista, V.; Agnor, C.; Bordé, P.; Fabrizio, N.; Bakos, G.; Rengel, M.; Gustin, J.; Hueso, R.; Fernández Hernández, Maite; Ray, T.; Claudi, R.; Femenía Castella, B.; Rebolo, R.; Sethenadh, J.; Luntzer, A.; Mueller Wodarg, I.; Delgado Mena, E.; Brown, L.; De Sio, A.; González Hernández, J.; Selsis, F.; Leconte, J.; Del Vecchio, C.; Budaj, J.; Scandariato, G.; Pagano, I.; García Piquer, A.; Guillot, T.; Terenzi, L.; Tabernero, H. M.; Forget, F.; Hargrave, P.; North, C.; Heyrovsky, D.; Cerulli, R.; Adybekian, V.; Read, P.; Pinsard, Frederic; Parmentier, V.; Collura, A.; Hubert, B.; Lanza, N.; Graczyk, R.; Fouqué, P.; Giuranna, M.; Valdivieso, M. L.; Pérez Hoyos, S.; Andersen, A.; Mall, U.; Buchhave, L. A.; Yelle, R.; Rickman, H.; Ballerini, P.; Affer, L.; Maruquette, J. B.; Sánchez Béjar, V. J.; Nelson, Richard; Fletcher, L.; Radioti, A.; Turrini, D.; Montes, D.; Gizon, L.; Galand, M.; Gómez, H.; Eymet, V.; Esposito, M.; Smith, A.; Morello, G.; Allende Prieto, C.; Justtanot, K.; Bryson, I.; Pallé, E.; Amado, P. J.; Figueira, P.; Shore, Steven; Focardi, M.; Strazzulla, G.; Giani, E.; Pietrzak, R.; González Merino, B.; Lo Cicero, Ugo; Gaulme, P.; Sozzetti, A.; Femenía Castella, B.; Maillard, J. P.; Cabral, A.; Iro, N.; Magnes, W.; Pinfield, David J.; Swain, M.; Showman, A.; Bellucci, G.; Kerins, E.; Maurin, A. S.; Poretti, E.; Boisse, I.; Barton, E. J.; Kervella, P.; Guio, P.; Norgaard Nielsen, H. U.; Bézard, B.; Montañés Rodríguez, P.; Banaszkiewicz, M.; Kovács, G.; Baffa, C.; Del Val Borro, M.; Belmonte Avilés, J. A.; Palla, F.; Hersant, F.; Correira, A.; Yung, Y.; Cockell, Charles S.; Vinatier, S.; Pilat Lohinger, E.; Krupp, N.; Orton, G.; Vakili, F.; Pezzuto, S.; Di Giorgio, A.; Waltham, D.; Testi, L.; Stiepen, A.; Deroo, P.; Capria, M. T.; Eales, S.; Irshad, R.; Stolarski, M.; Zapatero Osorio, M. R.; Swinyard, B.; Griffith, C.; Winek, W.; Bouy, H.; Thompson, S.; Maggio, A.; Moses, J.; Liu, S. J.; Lithgow Bertelloni, C.; Coudé du Foresto, V.; Martín Torres, Javier; Fletcher, L.; Barlow, M.; Coustenis, A.; Berry, D.; López Puertas, M.; Banaszkiewicz, M.; Lundgaard Rasmussen, I.; Hoogeveen, Ruud; Morais, H.; Watkins, C.; Oliva, E.; Scuderi, S.; Aylward, A.; Bonford, B.; Sitek, P.; Haigh, J.; Prisinzano, L.; Soret, L.; Wawrzaszk, A.; Lammer, H.; Figueira, P.; Gianotti, F.; Readorn, K.; Tanga, P.; Israelian, G.; Gesa, L.; Peralta, J.; Gómez Leal, I.; Cassan, A.; Tecsa, M.; Tessenyi, M.; Pancrazzi, M.; Coates, A.; Gambicorti, L.; Gear, W.; Winter, B.; Piskunov, N.; Álvarez Iglesias, C. A.; Polichtchouk, I.; Altieri, F.; Ottensamer, R.; Watson, D.; Rezac, L.; Vandenbussche, B.; Waters, R.; Dorfi, E.; Morgante, G.; Pascale, E.; Hornstrup, A.; Snellen, Ignas; Lodieu, N.; Lellouch, E.; Espinoza Contreras, M.; Jarchow, C.; Agúndez, Marcelino; Filacchione, G.; Abreu, M.; Grassi, D.; Tingley, B. W.; Sánchez Lavega, Agustín; Tozzi, A.; Sanz Forcada, J.; Kipping, D.; Chamberlain, S.; Trifoglio, M.; Barstow, J. K.; Santos, Nuno C.; Gillon, M.; Hébrard, E.; Cecchi Pestellini, C.; Fossey, S.; García López, Ramón; Thrastarson, H.; Rees, J. M.; Selig, A.; Galand, M.; Jacquemoud, S.; Branduardi Raymont, Graziella; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Danielski, C. [0000-0002-3729-2663]; Hornstrup, A. [0000-0002-3363-0936]; Kervella, P. [0000-0003-0626-1749]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Rickman, H. [0000-0002-9603-6619]; Maggio, A. [0000-0001-5154-6108]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Fletcher, L. [0000-0001-5834-9588]; Haigh, J. [0000-0001-5504-4754]; Bakos, G. [0000-0001-7204-6727]; Stixrude, L. [0000-0003-3778-2432]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Yurchenko, S. [0000-0001-9286-9501]; Rataj, M. [0000-0002-2978-9629]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Filacchione, G. [0000-0001-9567-0055]; Adibekyan, V. [0000-0002-0601-6199]; Budaj, J. [0000-0002-9125-7340]; Poretti, E. [0000-0003-1200-0473]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Piccioni, G. [0000-0002-7893-6808]; Ribas, I. [0000-0002-6689-0312]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Lognonne, P. [0000-0002-1014-920X]; Abreu, M. [0000-0002-0716-9568]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Tanga, P. [0000-0002-2718-997X]; Peralta, J. [0000-0002-6823-1695]; Hueso, R. [0000-0003-0169-123X]; Leto, G. [0000-0002-0040-5011]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Delgado, M. E. [0000-0003-4434-2195]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Bouy, H. [0000-0002-7084-487X[; Grassi, D. [0000-0003-1653-3066]; Figueira, P. [0000-0001-8504-283X]; Barton, E. [0000-0001-5945-9244]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Watson, D. [0000-0002-4465-8264]; Morales Calderon, M. [0000-0001-9526-9499]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Gillon, M. [0000-0003-1462-7739]; Bulgarelli, A. [0000-0001-6347-0649]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Pancrazzi, M. [0000-0002-3789-2482]; Barrado Navascues, D. [0000-0002-5971-9242]; Balado, A. [0000-0003-4268-2516]; Malaguti, G. [0000-0001-9872-3378]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Guillot, T. [0000-0002-7188-8428]; Altieri, F. [0000-0002-6338-8300]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; López Valverde, M. A. [0000-0002-7989-4267]; Cabral, A. [0000-0002-9433-871X]; Selsis, F. [0000-0001-9619-5356]; Turrini, D. [0000-0002-1923-7740]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; Damasso, M. [0000-0001-9984-4278]; Tizzi, A. [0000-0002-6725-3825]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pace, E. [0000-0001-5870-1772]; Pilat Lohinger, E. [0000-0002-5292-1923]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Claret, A. [0000-0002-4045-8134]; Olivia, E. [0000-0002-9123-0412]; Kovacs, G. [0000-0002-2365-2330]; Gómez, H. [0000-0003-3398-0052]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Scholz, A. [0000-0001-8993-5053]; Bezard, B. [0000-0002-5433-5661]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Maldonado, J. [0000-0002-4282-1072]; Gear, W. [0000-0001-6789-6196]; Sousa, S. [0000-0001-9047-2965]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Ade, P. [0000-0002-5127-0401]; Vandenbussche, B. [0000-0002-1368-3109]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Scandariato, G. [0000-0003-2029-0626]; Rodríguez, P. [0000-0002-6855-9682]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Pérez Hoyos, S. [0000-0001-9797-4917]
    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.