Persona:
de la fuente, Jose Luis

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Unidad organizativa
Instituto Nacional de Técnica Aeroespacial
El Instituto Nacional de Técnica Aeroespacial es el Organismo Público de Investigación (OPI) dependiente del Ministerio de Defensa. Además de realizar actividades de investigación científica y de desarrollo de sistemas y prototipos en su ámbito de conocimiento, presta servicios tecnológicos a empresas, universidades e instituciones. El INTA está especializado en la investigación y el desarrollo tecnológico, de carácter dual, en los ámbitos de la Aeronáutica, Espacio, Hidrodinámica, Seguridad y Defensa.

Puesto de trabajo

Apellidos

de la fuente

Nombre de pila

Jose Luis

Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 18
  • PublicaciónRestringido
    Highly efficient melt polymerization of diaminomaleonitrile
    (Elsevier BV, 2021-01-15) Mas, I.; Hortelano, C.; Ruiz-Bermejo, Marta; de la fuente, Jose Luis; Agencia Estatal de Investigación (AEI); 0000-0002-8059-1335; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    HCN polymers are of great interest in research on the origin of life and, currently, in materials science because they have shown potential for the design of electrical devices, (photo)catalysts and biomedicine. Herein, calorimetric measurements have successfully described the bulk polymerization of HCN tetramer, diaminomaleonitrile (DAMN). Two series of nonisothermal experiments were carried out by differential scanning calorimetry (DSC), and low-heating rate (β) the thermograms (β ≤ 5 °C/min) indicated that the polymerization is initiated at temperatures lower than the DAMN melting point, ~180 °C; while higher heating rates results in a rapid polymerization reaction, which occurs entirely in the liquid phase. The DSC data were analysed using model-free linear iso-conversional methods to estimate kinetic parameters, such as activation energy, and a suitable kinetic model was proposed for these thermal polymerizations in the melt. A preliminary structural and morphological characterization by means of Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) was also completed. This study demonstrated the autocatalytic, highly efficient and straightforward character of this stimulated thermal polymerization of DAMN and, to the best of our knowledge, describes for the first time a systematic and extended kinetic analysis to gain mechanistic insights into this process. The latter was done through the help of simultaneous thermogravimetry (TG)-DSC and in situ mass spectrometry (MS) technique to investigate the gas products generated during these melt polymerizations. These analyses revealed that deamination and dehydrocyanation processes are two relevant reactions involved in DAMN polymerization mechanism.
  • PublicaciónRestringido
    Catalytic effects over formation of functional thermoplastic elastomers for rocket propellants
    (Wiley, 2021-11-22) Lucio, B.; de la fuente, Jose Luis; Ministerio de Ciencia e Innovación (MICINN); Instituto Nacional de Técnica Aeroespacial (INTA); Gobierno Vasco
    Rheometry was the main method to characterize the curing process of binders made of functional polyurethanes (PUs). The macroglycols characterization by means of additional techniques such as nuclear magnetic resonance, size exclusion chromatography and differential scanning calorimetry, provided further information for the chemorheological description. Materials were based on Butacene ((ferrocenylbutyl)dimethylsilane grafted to hydroxyl-terminated polybutadiene (HTPB)), used in the solid propulsion field. First, the flow parameters for the uncured reactive mixtures of Butacene and four different diisocyanates were analysed via viscometry and these were markedly influenced by the chemical structure of the curing agents. Analysing the rheokinetic constant values of the pre-gel stage for Butacene- and HTPB-reactive systems, relevant catalysis caused by the ferrocene moiety was detected when aliphatic reactants were used, such as isophorone diisocyanate or 1,6-hexamethylene diisocyanate (IPDI and HMDI, respectively). No catalytic effect was found for 2,4-toluene diisocyanate (2,4-TDI) or even for 4,4’-methylenediphenyl diisocyanate (4,4’-MDI). Finally, the use of dynamic rheology was useful to evaluate the critical points during gelation process, where the reactivity of curing agents was associated with the achievement of elastic properties. Both techniques agreed the reactivity order of curing agents with Butacene, which is 4,4’-MDI > HMDI >> 2,4-TDI ≥ IPDI. The knowledge of the structure-reactivity relationship and, moreover, the kinetics of the urethane network formation for these metallo-PUs is paramount in manufacturing processes for advanced thermoplastic elastomer applications.
  • PublicaciónRestringido
    Kinetic and chemorheological modelling of the polymerization of 2,4- Toluenediisocyanate and ferrocene-functionalized hydroxyl-terminated polybutadiene
    (Elsevier, 2018-02-26) Lucio, B.; de la fuente, Jose Luis; Ministerio de Economía y Competitividad (MINECO)
    The reaction of 2,4-toluenediisocyanate (2,4-TDI) and a metallocenic-prepolymer derived from hydroxyl-terminated polybutadiene (HTPB) was studied in bulk and under isothermal conditions (50–80 °C) by rheological methods. Two regions distinguished and limited by the gel point, identified as the crossover of loss tangent (tan δ) at different frequencies, were analysed from different rheological properties during the curing process of this novel metallo-polyurethane (PU). The initial part of this polymerization, dominated by the viscous behaviour (from η0 ≈ 5 Pa s to η = 250 Pa s), was modelled through the Arrhenius isothermal model, in which the presence of two rheokinetic stages, due to different isocyanate groups in the 2 and 4 positions for this asymmetric monomer, was found until the gelation is reached. The contributions of the main reactions for the region analysed, before the gel point of this polyaddition, are discussed. The gel transition was identified, and the viscoelastic behaviour of the gelation process was studied in depth. In addition, from the evolution of the storage modulus (G′) recorded, the overall polymerization reaction was described by a Kamal-Sourour kinetic expression for the reaction rate. The different kinetic parameters obtained for the autocatalytic model used yielded predictions that agree very well with the experimental data, finding a significant autocatalytic effect. An isoconversional method allowed the determination of the dependence of the activation energy on the conversion degree during the network formation of this advanced functional ferrocene-PU, which is of great interest in rocket technology research for the development of the aerospace industry.
  • PublicaciónRestringido
    Chemorheology and Kinetics of High-Performance Polyurethane Binders Based on HMDI
    (Wiley Online Library, 2021-01-21) Lucio, B.; de la fuente, Jose Luis; Agencia Estatal de Investigación (AEI); Gobierno Vasco
    Aliphatic diisocyanates, such as 1,6-hexamethylene diisocyanate (HMDI), are preferred curing agents for the formation of polyurethanes (PUs) in applications where resistance to abrasion or degradation by ultraviolet light takes precedence. Aside from the final properties, the curing agent plays a key role in the bulk manufacturing of such materials, and it mainly affects the polymerization kinetics and their rheology. The copolymerization of HMDI and a metallo-prepolymer derivative from hydroxyl-terminated polybutadiene (HTPB) is studied under isothermal conditions (50–80 °C). This study is carried out by means of an indirect method, using both rotational viscometry and dynamic rheometry. At the beginning of the process, the viscosity growth fit well to a first-order kinetic model. Afterward, the reactive system passes through gelation, from which only rheology is allowed for the investigation of the entire polymerization process. This transition is analyzed in depth together with predictions from percolation theory. The conversion degree is determined from rheological measurements, and then an autocatalytic kinetic model is applied to describe the overall process. Finally, an isoconversional method allows the evolution of activation energy to be studied. This analysis merits attention for the development of high-performance binders that are of great interest in aerospace propulsion technology.
  • PublicaciónAcceso Abierto
    A dual perspective on the microwave-assisted synthesis of HCN polymers towards the chemical evolution and design of functional materials
    (Nature Research Journals, 2020-12-18) Hortal, Lucia; Pérez Fernández, Cristina; de la fuente, Jose Luis; Valles González, M. P.; Mateo Marti, Eva; Ruiz-Bermejo, Marta; Instituto Nacional de Técnica Aeroespacial (INTA); Agencia Estatal de Investigación (AEI); http://dx.doi.org/10.13039/501100011033; http://dx.doi.org/10.13039/501100010687; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    In this paper, the first study on NH4CN polymerization induced by microwave radiation is described, where a singular kinetic behaviour, especially when this reaction is conducted in the absence of air, is found. As a result, a complex conjugated N-heterocyclic polymer system is obtained, whose properties are very different, and even improved according to morphological features, characterized by their X-ray diffraction patterns and scanning electron microscopy analysis, with respect to those produced under conventional thermal treatment. In addition, a wide variety of relevant bioorganics have been identified, such as amino acids, nucleobases, co-factors, etc., from the synthetized NH4CN polymers. These particular families of polymers are of high interest in the fields of astrobiology and prebiotic chemistry and, more recently, in the development of smart multifunctional materials. From an astrobiological perspective, microwave-driven syntheses may simulate hydrothermal environments, which are considered ideal niches for increasing organic molecular complexity, and eventually as scenarios for an origin of life. From an industrial point of view and for potential applications, a microwave irradiation process leads to a notable decrease in the reaction times, and tune the properties of these new series macromolecular systems. The characteristics found for these materials encourage the development of further systematic research on this alternative HCN polymerization.
  • PublicaciónRestringido
    A Comparative Study on HCN Polymers Synthesized by Polymerization of NH4CN or Diaminomaleonitrile in Aqueous Media: New Perspectives for Prebiotic Chemistry and Materials Science
    (Chemistry Europe: European Chemical Societies Publishing, 2019-08-02) Ruiz-Bermejo, Marta; de la fuente, Jose Luis; Carretero González, J.; García Fernández, L.; Rosa Aguilar, M.; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    HCN polymers are a group of complex and heterogeneous substances that are widely known in the fields of astrobiology and prebiotic chemistry. In addition, they have recently received considerable attention as potential functional material coatings. However, the real nature and pathways of formation of HCN polymers remain open questions. It is well established that the tuning of macromolecular structures determines the properties and practical applications of a polymeric material. Herein, different synthetic conditions were explored for the production of HCN polymers from NHCN or diaminomaleonitrile in aqueous media with different concentrations of the starting reactants and several reaction times. By using a systematic methodology, both series of polymers were shown to exhibit similar, but not identical, spectroscopic and thermal fingerprints, which resulted in a clear differentiation of their morphological and electrochemical properties. New macrostructures are proposed for HCN polymers, and promising insights are discussed for prebiotic chemistry and materials science on the basis of the experimental results.
  • PublicaciónAcceso Abierto
    Adhesives Based on Poly(glycidyl methacrylate-co-butyl acrylate) with Controlled Structure: Curing Behavior and Adhesion Properties on Metal Substrates
    (Wiley, 2023-10-26) Cañamero, Pedro; Fernández García, Marta; de la fuente, Jose Luis; Ministerio de Ciencia e Innovación (MICINN); Instituto Nacional de Técnica Aeroespacial (INTA)
    The adhesion properties of poly(glycidyl methacrylate (GMA)-co-butyl acrylate (BA)) statistical copolymers, synthesized by atom transfer radical polymerization (ATRP), are investigated employing three different curing agents or hardeners, such as diethanolamine (DEA), dicyandiamide (DICY), and 2-cyanoacetamide (2-CA) on copper, iron, brass, aluminum, and titanium metal surfaces. This work describes the treatment of the different surfaces, establishes the optimal curing conditions from differential scanning calorimetry (DSC) analysis of these novel adhesive systems, and evaluates the results of the single-lap shear test for metal joints. Thus, by dynamic DSC measurements of the mixtures, a low curing temperature of 90 °C is defined when DEA is used as a curative; while systems based on DICY and 2-CA require temperatures of 150 °C and 160 °C, respectively. In addition, the curing process of this controlled acrylic copolymer with DICY exhibits a singular behavior, possibly due to the curing reaction mechanism, where multiple epoxy-amine ring-opening polyaddition reactions take place between DICY's active hydrogens and epoxy groups of poly(GMA-co-BA). This latter curing system shows the highest adhesion features with lap-shear strength at room temperature of 15.5 MPa, using copper as metallic substrate; however, the best results are obtained using 2-CA as curing agent with aluminum and iron.
  • PublicaciónRestringido
    Ammonium affects the wet chemical network of HCN: feedback between prebiotic chemistry and materials science
    (Royal Society of Chemistry, 2023-06-21) de la fuente, Jose Luis; Vega, Jorge; Mateo Marti, Eva; Valles González, M. P.; Ruiz-Bermejo, Marta; Pérez Fernández, Cristina; Instituto Nacional de Técnica Aeroespacial (INTA); Universidad Complutense de Madrid (UCM); Agencia Estatal de Investigación (AEI); Consejo Superior de Investigaciones Científicas (CSIC); Ministerio de Ciencia, Innovación y Universidades (MICINN)
    Prebiotic chemistry one-pot reactions, such as HCN-derived polymerizations, have been used as stimulating starting points for the generation of new multifunctional materials due to the simplicity of the processes, use of water as solvent, and moderate thermal conditions. Slight experimental variations in this special kind of polymerization tune the final properties of the products. Thus, herein, the influence of NH4Cl on the polymerization kinetics of cyanide under hydrothermal conditions and on the macrostructures and properties of this complex system is explored. The kinetics of the process is consistent with an autocatalytic model, but important variations in the polymerization reaction are observed according to a simple empirical model based on a Hill equation. The differences in the kinetic behaviour against NH4Cl were also revealed when the structural, morphological, thermal, electronic and magnetic properties of the synthesized cyanide polymers were compared, and these properties were evaluated by elemental analysis, FTIR, XPS, UV-vis, and ESR spectroscopies, X-ray diffraction, SEM and thermoanalytical techniques. As a result, this hydrothermal prebiotic polymerization is not only pH dependent, as previously thought, but also ammonium subservient. From this result, a hypothetical reaction mechanism was proposed, which involves the active participation of ammonium cations via formamidine and serves as a remarkable point against previous reports. The results discussed here expand the knowledge on HCN wet chemistry, offer an extended view of the relevant parameters during the simulation of hydrothermal scenarios and describe the production of promising paramagnetic and semiconducting materials inspired by prebiotic chemistry.
  • PublicaciónAcceso Abierto
    Kinetic Study of the Effective Thermal Polymerization of a Prebiotic Monomer: Aminomalononitrile
    (Multidisciplinary Digital Publishing Institute, 2023-01-17) Hortelano, C.; Ruiz-Bermejo, Marta; de la fuente, Jose Luis; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN)
  • PublicaciónRestringido
    Modelling the kinetics and structural property evolution of a versatile reaction: aqueous HCN polymerization
    (Royal Society of Chemistry (RSC), 2018-05-29) Fernández, Amparo; Ruiz-Bermejo, Marta; de la fuente, Jose Luis; Ministerio de Economía y Competitividad (MINECO); Instituto Nacional de Técnica Aeroespacial (INTA)
    The kinetics of the reaction of the synthesis of HCN polymers in aqueous medium at high temperatures have been analysed to ascertain a suitable model for this material, for which it was recently demonstrated that prebiotic chemistry may now be adapted in the development of a new generation of high performance coatings and adhesives with biomedical applications. These experimental conditions were chosen for the simplicity of the reagents, being particularly convenient in regard to potential industrial scale-up of coating technology, where these polymers have revealed an interesting field of application. The kinetics of the precipitation polymerization of HCN in water were studied under isothermal conditions at four different temperatures between 75 °C and 90 °C throughout gravimetric measurements. The use of the Kamal–Sourour autocatalytic kinetic model was proposed, properly describing the overall formation process of this insoluble HCN polymer. All of the kinetic parameters, including reaction orders, kinetic constants and activation energy, were determined for the cross-linking polymerization reaction under study, and a relevant autocatalysis effect was observed. An isoconversion method was also used to analyse the variation of the global activation energy with conversion; and characterization by means of elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) was carried out. This study demonstrates the autocatalytic, robust and straightforward character of this heterogeneous aqueous HCN polymerization, and to the best of our knowledge, this report describes the first time that a systematic and extended kinetic analysis has been conducted to obtain a more comprehensive and deeper understanding of this complex reaction, which is of great interest to the origin of life and, currently, to materials science.