Publicación:
Ejecta from the DART-produced active asteroid Dimorphos

dc.contributor.authorLi, Jian Yang
dc.contributor.authorHirabayashi, Masatoshi
dc.contributor.authorFarnham, Tony
dc.contributor.authorSunshine, Jessica
dc.contributor.authorKnight, Matthew
dc.contributor.authorTancredi, Gonzalo
dc.contributor.authorMoreno, Fernando
dc.contributor.authorMurphy, Brian
dc.contributor.authorOpitom, Cyrielle
dc.contributor.authorChesley, Steve
dc.contributor.authorScheeres, Daniel
dc.contributor.authorThomas, Cristina
dc.contributor.authorFahnestock, Eugene
dc.contributor.authorCheng, Andrew
dc.contributor.authorDressel, Linda
dc.contributor.authorErnst, Carolyn
dc.contributor.authorFerrari, Fabio
dc.contributor.authorFitzsimmons, Alan
dc.contributor.authorLeva, Simone
dc.contributor.authorIvanovski, Stavro
dc.contributor.authorKareta, Theodore
dc.contributor.authorKolokolova, Ludmilla
dc.contributor.authorLister, Tim
dc.contributor.authorRaducan, Sabina
dc.contributor.authorRivkin, Andrew
dc.contributor.authorRossi, Alessandro
dc.contributor.authorSoldini, Stefania
dc.contributor.authorStickle, Angela
dc.contributor.authorVick, Alison
dc.contributor.authorVicent, Jean-Baptiste
dc.contributor.authorWeaver, Harold
dc.contributor.authorBagnulo, Stefano
dc.contributor.authorBannister, Michele
dc.contributor.authorCambioni, Saverio
dc.contributor.authorCampo Bagatin, Adriano
dc.contributor.authorChabot, Nancy
dc.contributor.authorCremonese, Gabriele
dc.contributor.authorDaly, Terik
dc.contributor.authorDotto, Elisabetta
dc.contributor.authorGlenar, David
dc.contributor.authorGranvik, Mikael
dc.contributor.authorHasselmann, Pedro
dc.contributor.authorHerreros, Isabel
dc.contributor.authorJacobson, Seth
dc.contributor.authorJutzi, Martín
dc.contributor.authorKohout, Tomas
dc.contributor.authorLa Forgia, Tomas
dc.contributor.authorLazzarin, Monica
dc.contributor.authorLin, Zhong Yi
dc.contributor.authorLolachi, Ramin
dc.contributor.authorLucchetti, Alice
dc.contributor.authorMakadia, Rahil
dc.contributor.authorMazzotta Epifani, Elena
dc.contributor.authorMichel, Patrick
dc.contributor.authorMigliorini, Alessandra
dc.contributor.authorMoskovitz, Nicholas
dc.contributor.authorOrmö, Jens
dc.contributor.authorPajola, Maurizio
dc.contributor.authorSánchez, Paul
dc.contributor.authorSchwartz, Stephen
dc.contributor.authorSnodgrass, Colin
dc.contributor.authorSteckloff, Jordan
dc.contributor.authorStubbs, Timothy
dc.contributor.authorTrigo Rodríguez, Josep
dc.contributor.funderSwiss National Science Foundation (SNSF)
dc.contributor.funderNational Aeronautics and Space Administration (NASA)
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.funderAgencia Nacional de Investigación e Innovación (ANII)
dc.contributor.funderInstitute of Geology of the Czech Academy of Sciences
dc.contributor.funderAcademy of Finland
dc.contributor.otherCentro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2026-01-14T08:14:10Z
dc.date.available2026-01-14T08:14:10Z
dc.date.issued2023-03-01
dc.descriptionAll raw HST data associated with this Article are archived and are publicly available at the Mikulski Archive for Space Telescopes (https://mast.stsci.edu/search/ui/#/hst/results?proposal_id=16674) hosted by the Space Telescope Science Institute. The stacked long exposures in Figs. 2–4 are available from a website hosted at JHU/APL (https://lib.jhuapl.edu/papers/ejecta-from-the-dart-produced-active-asteroid-dimo). Other related data are available from the corresponding author upon request.
dc.description.abstractSome active asteroids have been proposed to be formed as a result of impact events. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA, in addition to having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipThis work was supported by the DART mission, NASA contract no. 80MSFC20D0004 and by the Italian Space Agency (ASI) through the LICIACube project (ASI-INAF agreement AC no. 2019-31-HH.0). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. J.-Y.L. acknowledges the support provided by NASA through grant HST-GO-16674 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 5-26555. L.K. acknowledges support from the NASA DART Participating Scientist Program, Grant no. 80NSSC21K1131. R.L., D.A.G. and T.J.S. acknowledge funding from the NASA/GSFC Internal Scientist Funding Model (ISFM) Exospheres, Ionospheres, Magnetospheres Modeling (EIMM) team, the NASA Solar System Exploration Research Virtual Institute (SSERVI) and NASA award no. 80GSFC21M0002. R.M. acknowledges support from a NASA Space Technology Graduate Research Opportunities (NSTGRO) Award (contract no. 80NSSC22K1173). P.M. acknowledges funding support from the Horizon 2020 research and innovation programme of the European Union under grant agreement no. 870377 (project NEO-MAPP), the CNRS through the MITI interdisciplinary programmes, CNES and ESA. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione grant no. 193346. J.O. has been funded by grant no. PID2021-125883NB-C22 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033 and by the European Regional Development Fund “A way of making Europe”. G.T. acknowledge financial support from project FCE-1-2019-1-156451 of the Agencia Nacional de Investigación e Innovación ANII (Uruguay). T. Kohout is supported by the Academy of Finland project 335595 and by institutional support RVO 67985831 from the Institute of Geology of the Czech Academy of Sciences. F.M. acknowledges financial support from grants CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033 and PID2021-123370OB-I00. Research by M.G. is supported, in part, by the Academy of Finland grant 345115. J.M.T.-R. acknowledges financial support from the project PID2021-128062NB-I00 funded by Spanish MCIN/AEI/10.13039/501100011033. We thank J. DePasquale (STScI) for generating the animation included in Supplementary Video.
dc.identifier.citationNature 616: 452-456
dc.identifier.doi10.1038/s41586-023-05811-4
dc.identifier.e-issn1476-4687
dc.identifier.issn0028-0836
dc.identifier.otherhttps://www.nature.com/articles/s41586-023-05811-4
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1615
dc.language.isoeng
dc.publisherSpringer Nature
dc.relationNear Earth Object Modelling and Payloads for Protection
dc.relationIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
dc.relationCOMETARY AND ASTEROIDAL DUST SCIENCE
dc.relationPROPIEDADES FISICO-QUIMICAS DE ASTEROIDES Y COMETAS A PARTIR DEL ESTUDIO EN EL LABORATORIO DE METEORITOS Y MUESTRAS RETORNADAS
dc.relation.isreferencedbyJewitt, D. & Hsieh, H. H. The asteroid-comet continuum. Preprint at https://arxiv.org/abs/2203.01397 (2022). Daly, R. T. et al. Successful kinetic impact into an asteroid for planetary defence. Nature https://doi.org/10.1038/s41586-023-05810-5 (2023). Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature https://doi.org/10.1038/s41586-023-05805-2 (2023). Jewitt, D., Weaver, H., Agarwal, J., Mutchler, M. & Drahus, M.A recent disruption of the main-belt asteroid P/2010 A2. Nature 467, 817–819 (2010). Snodgrass, C. et al. A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2. Nature 467, 814–816 (2010). Tancredi, G., Liu, P.-Y., Campo-Bagatin, A., Moreno, F. & Domínguez, B. Lofting of low speed ejecta produced in the DART experiment and production of a dust cloud. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stac3258 (2022). Cintala, M. J., Berthoud, L. & Hörz, F. Ejection-velocity distributions from impacts into coarse-grained sand. Meteor. Planet. Sci. 34, 605–623 (1999). Housen, K. R. & Holsapple, K. A. Ejecta from impact craters. Icarus 211, 856–875 (2011). Schultz, P. H., Gault, D. E. & Crawford, D. Impacts of hemispherical granular targets: Implications for global impacts. In Reports of Planetary Geology and Geophysics Program 380–381 (NASA, 1986). Raducan, S. D., Davison, T. M. & Collins, G. S. Ejecta distribution and momentum transfer from oblique impacts on asteroid surfaces. Icarus 374, 114793 (2022). Raducan, S. D. et al. Influence of the projectile geometry on the momentum transfer from a kinetic impactor and implications for the DART mission. Int. J. Impact Eng. 162, 104147 (2022). A’Hearn, M. F. et al. Deep Impact: excavating comet Tempel 1. Science 310, 258–264 (2005). Feldman, P. D. et al. Hubble Space Telescope observations of Comet 9P/Tempel 1 during the Deep Impact encounter. Icarus 187, 113–122 (2007). Meech, K. J. et al. Deep Impact: observations from a worldwide Earth-based campaign. Science 310, 265–269 (2005). Richardson, J. E., Melosh, H. J., Lisse, C. M. & Carcich, B. A ballistics analysis of the Deep Impact ejecta plume: determining Comet Tempel 1’s gravity, mass, and density. Icarus 190, 357–390 (2007). Sunshine, J. M. et al. The distribution of water ice in the interior of Comet Tempel 1. Icarus 190, 284–294 (2007). Lisse, C. M. et al. Spitzer spectral observations of the Deep Impact ejecta. Science 313, 635–640 (2006). Ormö, J. et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids. Earth Planet. Sci. Lett. 594, 117713 (2022). Kadono, T. et al. Pattern of impact-induced ejecta from granular targets with large inclusions. Astrophys. J. Lett. 880, L30 (2019). Ferrari, F., Raducan, S. D., Soldini, S. & Jutzi, M. Ejecta formation, early collisional processes, and dynamical evolution after the DART impact on Dimorphos. Planet. Sci. J. 3, 177 (2022). Yu, Y., Michel, P., Schwartz, S. R., Naidu, S. P. & Benner, L. A. M. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: I. Mechanical environment and dynamical model. Icarus 282, 313–325 (2017). Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979). Kim, Y., Ishiguro, M., Michikami, T. & Nakamura, A. M. Anisotropic ejection from active asteroid P/2010 A2: an implication of impact shattering on an asteroid. Astron. J. 153, 228 (2017). Hainaut, O. R. et al. P/2010 A2 LINEAR. I. An impact in the asteroid main belt. Astron. Astrophys. 537, A69 (2012). Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M. & Larson, S. The extraordinary multi-tailed main-belt comet P/2013 P5. Astrophys. J. Lett. 778, L21 (2013). Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M. & Larson, S. Episodic ejection from active asteroid 311P/PANSTARRS. Astrophys. J. 798, 109 (2015). Kleyna, J. T. et al. The sporadic activity of (6478) Gault: A YOPR-driven event? Astrophys. J. Lett. 874, L20 (2019). Jewitt, D. et al. Episodically active asteroid 6478 Gault. Astrophys. J. Lett. 876, L19 (2019). Scheirich, P. & Pravec, P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 3, 163 (2022). Calamida, A. et al. New photometric calibration of the Wide Field Camera 3 detectors. Astron. J. 164, 32 (2022). Sahu, K. et al. WFC3 Data Handbook v.5.0 (STScI, 2021). Samarasinha, N. H. & Larson, S. M. Image enhancement techniques for quantitative investigations of morphological features in cometary comae: a comparative study. Icarus 239, 168–185 (2014). Britt, D. T. & Consolmagno, G. J. S. J. Stony meteorite porosities and densities: a review of the data through 2001. Meteor. Planet. Sci. 38, 1161–1180 (2003). Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013). Finson, M. L. & Probstein, R. F. A theory of dust comets. I. Model and equations. Astrophys. J. 154, 327–352 (1968). Rossi, A. et al. Dynamical evolution of ejecta from the DART impact on Dimorphos. Planet. Sci. J. 3, 118 (2022). Fahnestock, E. G. et al. Pre-encounter predictions of DART impact ejecta behavior and observability. Planet. Sci. J. 3, 206 (2022). Volten, H. et al. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res. Atmos. 106, 17375–17401 (2001). Muñoz, O. et al. Experimental phase functions of millimeter-sized cosmic dust grains. Astrophys. J. 846, 85 (2017). Nousiainen, T., Kahnert, M. & Lindqvist, H. Can particle shape information be retrieved from light-scattering observations using spheroidal model particles? J. Quant. Spectrosc. Radiat. Transf. 112, 2213–2225 (2011). Moreno, F., Campo Bagatin, A., Tancredi, G., Liu, P.-Y. & Domínguez, B. Ground-based observability of Dimorphos DART impact ejecta: photometric predictions. Mon. Not. R. Astron. Soc. 515, 2178–2187 (2022). Hartzell, C. M. Dynamics of 2D electrostatic dust levitation at asteroids. Icarus 333, 234–242 (2019). Kitazato, K. et al. Photometric behaviour dependent on solar phase angle and physical characteristics of binary near-Earth-asteroid (65803) 1996 GT. In Proc. 35th Lunar and Planetary Science Conference 1623 (Lunar and Planetary Institute, 2004).
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseCopyright © 2023, The Author(s)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectAsteroids, comets and kuiper belt
dc.subjectAstophysical dust
dc.titleEjecta from the DART-produced active asteroid Dimorphos
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumber870377
oaire.awardNumberPID2021-125883NB-C22
oaire.awardNumberPID2021-123370OB-I00
oaire.awardNumberPID2021-128062NB-I00
oaire.awardTitleNear Earth Object Modelling and Payloads for Protection
oaire.awardTitleIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
oaire.awardTitleCOMETARY AND ASTEROIDAL DUST SCIENCE
oaire.awardTitlePROPIEDADES FISICO-QUIMICAS DE ASTEROIDES Y COMETAS A PARTIR DEL ESTUDIO EN EL LABORATORIO DE METEORITOS Y MUESTRAS RETORNADAS
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1564
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1560
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1613
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1566
relation.isAuthorOfPublicationaacaf4b6-dd8b-4efe-8eab-286972560642
relation.isAuthorOfPublication22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isAuthorOfPublication.latestForDiscovery22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isProjectOfPublication66336fb8-cefb-4a56-8675-99362082c44d
relation.isProjectOfPublication66f1b32f-e228-410e-bcf6-ede7db21aa06
relation.isProjectOfPublication56c76cc5-df42-4aca-98f0-504b612700cd
relation.isProjectOfPublicatione7365282-fd0a-4bc8-b0c1-5feeeff43468
relation.isProjectOfPublication.latestForDiscovery66336fb8-cefb-4a56-8675-99362082c44d

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Ejecta from the DART produced active asteroid Dimorphos.pdf
Tamaño:
13.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones