Publicación:
Morphology of ejecta features from the impact on asteroid Dimorphos

dc.contributor.authorFerrari, Fabio
dc.contributor.authorPanicucci, Paolo
dc.contributor.authorMerisio, Gianmario
dc.contributor.authorPugliatti, Mattia
dc.contributor.authorLi, Jian Yang
dc.contributor.authorFahnestock, Eugene
dc.contributor.authorRaducan, Sabina
dc.contributor.authorJutzi, Martín
dc.contributor.authorSoldini, Stefania
dc.contributor.authorHirabayashi, Masatoshi
dc.contributor.authorMerrill, Colby
dc.contributor.authorMichel, Patrick
dc.contributor.authorMoreno, Fernando
dc.contributor.authorTancredi, Gonzalo
dc.contributor.authorSunshine, Jessica
dc.contributor.authorOrmö, Jens
dc.contributor.authorHerreros, Isabel
dc.contributor.authorAgrusa, Harrison
dc.contributor.authorKaratekin, Ozgur
dc.contributor.authorZhang, Yun
dc.contributor.authorChabot, Nancy
dc.contributor.authorCheng, Andrew
dc.contributor.authorRichardson, Derek
dc.contributor.authorRivkin, Andrew
dc.contributor.authorCampo Bagati, Adriano
dc.contributor.authorFarnham, Tony
dc.contributor.authorIvanovski, Stavro
dc.contributor.authorLucchetti, Alice
dc.contributor.authorPajola, Maurizio
dc.contributor.authorRossi, Alessandro
dc.contributor.authorScheeres, Daniel
dc.contributor.authorTusberti, Filippo
dc.contributor.funderNational Aeronautics and Space Administration (NASA)
dc.contributor.funderEuropean Research Council (ERC)
dc.contributor.funderSwiss National Science Foundation (SNSF)
dc.contributor.funderCentre National D'Etudes Spatiales (CNES)
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.funderAgencia Nacional de Investigacíon e Innovacíon (ANII)
dc.contributor.funderConsejo Superior de Investigaciones Científicas (CSIC)
dc.contributor.funderAgenzia Spaziale Italiana (ASI)
dc.date.accessioned2026-01-13T10:31:45Z
dc.date.available2026-01-13T10:31:45Z
dc.date.issued2025-02-14
dc.descriptionSource data are provided with this paper. All raw HST data associated with this Article are archived and are publicly available at the Mikulski Archive for Space Telescopes (https://mast.stsci.edu/search/ui/#/hst/results?proposal_id=16674) hosted by the Space Telescope Science Institute. The numerical simulation data, synthetic images, masks, and labels generated in this study have been deposited in the Zenodo database and are publicly available at https://doi.org/10.5281/zenodo.14630436. Source data are provided with this paper.
dc.description.abstractHypervelocity impacts play a significant role in the evolution of asteroids, causing material to be ejected and partially reaccreted. However, the dynamics and evolution of ejected material in a binary asteroid system have never been observed directly. Observations of Double Asteroid Redirection Test (DART) impact on asteroid Dimorphos have revealed features on a scale of thousands of kilometers, including curved ejecta streams and a tail bifurcation originating from the Didymos system. Here we show that these features result naturally from the dynamical interaction of the ejecta with the binary system and solar radiation pressure. These mechanisms may be used to constrain the orbit of a secondary body, or to investigate the binary nature of an asteroid. Also, they may reveal breakup or fission events in active asteroids, and help determine the asteroid’s properties following an impact event. In the case of DART, our findings suggest that Dimorphos is a very weak, rubble-pile asteroid, with an ejecta mass estimated to be in the range of (1.1-5.5)×107 kg.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipThis work was supported by the DART mission, NASA Contract 80MSFC20D0004. F.F. acknowledges support from the European Union ERC Grant agreement No. 101077758 (TRACES). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. F.F. acknowledges support from the Swiss National Science Foundation (SNSF) Ambizione grant No. 193346. J.-Y.L. acknowledges the support provided by NASA through grant HST-GO-16674 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 5-26555. The work of E.G.F. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (#80NM0018D0004). S.D.R. and M.J. acknowledge support by the Swiss National Science Foundation (project number 200021 207359). S.S. acknowledges financial support from grant ref MR/W009498/1 of the UK Research and Innovation. P.M. acknowledges the French space agency CNES, ESA and The University of Tokyo. F.M. acknowledges financial support from grants PID2021-123370OB-I00 and CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033. G.T. acknowledges financial support from project FCE-1-2019-1-156451 of the Agencia Nacional de Investigacíon e Innovacíon ANII and Grupos I + D 2022 CSIC-Udelar (Uruguay). J.O. acknowledges support by grant PID2021-125883NB-C22 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”. J.O. and I.H. acknowledge support by the Spanish Research Council (CSIC) support for international cooperation: I-LINK project ILINK22061. O.K. acknowledges funding support from the PRODEX program managed by the European Space Agency (ESA) with help of the Belgian Science Policy Office (BELSPO). A.C.B. acknowledges funding by the NEO-MAPP project 717 GA 870377, EC H2020-SPACE-718 2018-2020/H2020-SPACE-2019, and by MICINN (Spain) PGC2021, PID2021-125883NB-C21. S.I., A.L., M.P., A.R. and F.T. acknowledge support by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement n. 2019-31-HH.0) and HERA project (ASI-INAF agreement n. 2022−8-HH.0). The simulation campaign was performed using the Euler supercomputer at DAER/PoliMi, the authors thank Francesco Topputo for the support and discussions.
dc.description.tableofcontentsAuthors and Affiliations Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy Fabio Ferrari, Paolo Panicucci, Gianmario Merisio, Carmine Giordano & Mattia Pugliatti Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China Jian-Yang Li Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, USA Eugene G. Fahnestock Space Research and Planetary Sciences, Physikalisches Institut, University of Bern, Bern, Switzerland Sabina D. Raducan & Martin Jutzi Department of Mechanical and Aerospace Engineering, University of Liverpool, Brownlow Hill, UK Stefania Soldini Georgia Institute of Technology, Atlanta, GA, USA Masatoshi Hirabayashi Auburn University, Auburn, AL, USA Masatoshi Hirabayashi Cornell University, Ithaca, NY, USA Colby C. Merrill Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France Patrick Michel & Harrison Agrusa Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan Patrick Michel Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain Fernando Moreno Departamento de Astronomía, Facultad de Ciencias, Udelar, Uruguay Gonzalo Tancredi University of Maryland, College Park, MD, USA Jessica M. Sunshine, Harrison Agrusa, Derek C. Richardson & Tony L. Farnham Department of Astronomy and Department of Geology, University of Maryland, College Park, MD, USA Jessica M. Sunshine Centro de Astrobiologia (CAB), CSIC-INTA, Torrejon de Ardoz, Spain Jens Ormö & Isabel Herreros Royal Observatory of Belgium, Brussels, Belgium Ozgur Karatekin Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA Yun Zhang Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Nancy L. Chabot, Andrew F. Cheng & Andrew S. Rivkin IUFACyT—DFISTS. Universidad de Alicante, Alicante, Spain Adriano Campo Bagatin INAF—Osservatorio Astronomico di Trieste, Trieste, Italy Stavro Ivanovski INAF-OAPD, Astronomical Observatory of Padova, Padova, Italy Alice Lucchetti, Maurizio Pajola & Filippo Tusberti IFAC-CNR, Sesto Fiorentino, Italy Alessandro Rossi University of Colorado Boulder, Boulder, CO, USA Daniel J. Scheeres
dc.identifier.citationNature Communications 16: 1601
dc.identifier.doi10.1038/s41467-025-56551-0
dc.identifier.otherhttps://www.nature.com/articles/s41467-025-56551-0
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1614
dc.language.isoeng
dc.publisherNature
dc.relationIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
dc.relationNear Earth Object Modelling and Payloads for Protection
dc.relationCOMETARY AND ASTEROIDAL DUST SCIENCE
dc.relation.isreferencedbyDaly, R. T. et al. Successful kinetic impact into an asteroid for planetary defence. Nature 616, 443–447 (2023). Rivkin, A. S. & Cheng, A. F. Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects. Nat. Commun. 14, 1003 (2023). Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448–451 (2023). Cheng, A. F. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457–460 (2023). Naidu, A. P. et al. Orbital and physical characterization of asteroid Dimorphos following the DART impact. Planet. Sci. J. 5, 49 (2024). Chabot, N. L. et al. Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 5, 74 (2024). Scheirich, P. et al. Dimorphos orbit determination from mutual events photometry. Planet. Sci. J. 5, 17 (2024). Makadia, R., Raducan, S. D., Fahnestock, E. G. & Eggl, S. Heliocentric effects of the DART mission on the (65803) Didymos binary asteroid system. Planet. Sci. J 3, 184 (2022). Li, J.-Y. et al. Ejecta from the DART-produced active asteroid Dimorphos. Nature 616, 452–456 (2023). Kareta, T. et al. Ejecta evolution following a planned impact into an asteroid: the first five weeks. Astrophys. J. Lett. 959, L12 (2023). Lister, T. et al. Long term monitoring of Didymos with the LCOGT network after the DART impact. Planet. Sci. J. 5, 127 (2024). Murphy, B. P. et al. VLT/MUSE characterisation of Dimorphos ejecta from the DART impact. Planet. Sci. J. 4, 238 (2023). Rożek, A. et al. Optical monitoring of the Didymos-Dimorphos asteroid system with the Danish telescope around the DART mission impact. Planet. Sci. J. 4, 236 (2023). Weaver, H. A. et al. Lucy observations of the DART impact event. Planet. Sci. J. 5, 43 (2024). Graykowski, A. et al. Light curves and colours of the ejecta from Dimorphos after the DART impact. Nature 616, 461–464 (2023). Roth, N. X. et al. ALMA observations of the DART impact: characterizing the ejecta at submillimeter wavelengths. Planet. Sci. J. 4, 206 (2023). Jewitt, D., Kim, Y., Li, J. & Mutchler, M. The Dimorphos boulder swarm. Astrophys J Lett 952, 1 (2023). Moreno, F. et al. Characterization of the Ejecta from the NASA/DART impact on dimorphos: observations and Monte Carlo models. Planet Sci. J. 4, 138 (2023). Raducan, A. D. et al. Physical properties of asteroid Dimorphos as derived from the DART impact. Nat. Astron. 8, 445–455 (2024). Cheng, A. F. et al. DART impact ejecta plume evolution: implications for Dimorphos. Planet. Sci. J. 5, 118 (2024). Dotto, E. et al. The Dimorphos ejecta plume properties revealed by LICIACube. Nature 627, 505–509 (2024). Dotto, E. & Zinzi, A. Impact observations of asteroid Dimorphos via light Italian CubeSat for imaging of asteroids (LICIACube). Nat Commun 14, 3055 (2023). Zinzi, A. et al. VADER: probing the dark side of Dimorphos with LICIACube LUKE. Planet. Sci. J 5, 103 (2024). Hirabayashi, M. et al. Kinetic deflection change due to target global curvature as revealed by NASA/DART. Nat Commun. (in the press). Deshapriya, J. D. P. et al. Characterization of DART Impact Ejecta Plume on Dimorphos from LICIACube Observations. Planet. Sci. J. 4, 138 (2023). Tancredi, G. et al. Lofting of low-speed ejecta produced in the DART experiment and production of a dust cloud. Mon Notices R. Astron. Soc. 522.2, 2403–2414 (2023). Ferrari, F. et al. Preliminary mission profile of Hera’s Milani CubeSat. Adv. Space Res. 67.6, 2010–2029 (2021). Ferrari, F., Raducan, S. D., Soldini, S. & Jutzi, M. Ejecta formation, early collisional processes, and dynamical evolution after the DART impact on Dimorphos. Planet. Sci. J 3, 107 (2022). Rossi, A. et al. Dynamical evolution of ejecta from the DART impact on Dimorphos. Planet. Sci. J 3, 108 (2022). Moreno, F. et al. Ground-based observability of Dimorphos DART impact ejecta: photometric predictions. Mon Notices R. Astron. Soc. 515.2, 2178–2187 (2022). Bodewits, D. et al. Collisional excavation of asteroid (596) Scheila. Astrophys. J. Lett. 733, 3 (2011). Ishiguro, M. et al. Observational evidence for an impact on the main-belt asteroid (596) Scheila. Astrophys. J. Lett. 740, 11 (2011). Jewitt, D. et al. A recent disruption of the main-belt asteroid P/2010A2. Nature 467, 817–819 (2010). Kin, Y., Ishiguro, M., Michikami, T. & Nakamura, A. M. Anisotropic ejection from active asteroid P/2010 A2: an implication of impact shattering on an asteroid. Astron. J. 153, 228 (2017). Hainaut, O. R. et al. P/2010 A2 LINEAR. I. An impact in the asteroid main belt. Astron. Astrophys. 537, A69 (2012). Snodgrass, C. et al. A collision in 2009 as the origin of the debris trail of asteroid P/2010A2. Nature 467, 814–816 (2010). Naidu, S. P. et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus 380, 113777 (2020). Richardson, D. C. et al. The dynamical state of the Didymos system before and after the DART impact. Planet. Sci. J. 5, 182 (2024). Ormö, J. et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids. Earth Planet. Sci. Lett. 594, 117713 (2022). Kadono, T. et al. Pattern of impact-induced ejecta from granular targets with large inclusions. Astrophys. J. Lett. 880, L30 (2019). Damme, F. & Oberst, J. Orbital distances and options for small body satellites in Non-Keplerian orbits dominated by solar radiation pressure. Planet. Space Sci. 219, 105518 (2022). Kim, Y. & Jewitt, D. A Single Ejection Model of the DART/Dimorphos Debris Trail. Astrophys. J. Lett. 956, 26 (2023). Kleyna, J. T. et al. The sporadic activity of (6478) gault: a YORP-driven event? Astrophys. J. Lett. 870, L20 (2019). Jewitt, D. et al. Episodically active asteroid 6478 gault. Astrophys. J. Lett. 876, L19 (2019). Jewitt, D. et al. The extraordinary multi-tailed main-belt comet P/2013 P5. Astrophys. J. Lett. 778, L21 (2013). Jewitt, D. et al. Episodic ejection from active asteroid 311P/PANSTARRS. Astrophys. J. 798, 109 (2018). Meyer, A. J. et al. The perturbed full two-body problem: application to post-DART Didymos. Planet Sci J 4, 141 (2023). Nakano, R. et al. Dimorphos’s orbit period change and attitude perturbation due to its reshaping after the DART impact. Planet. Sci. J. 5, 133 (2024). Cueva, R. et al. The secular dynamical evolution of binary asteroid system (65803) Didymos post-DART. Planet. Sci. J 5, 48 (2024). Michel, P. et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J. 3, 160 (2022). Fahnestock, E. G. et al. Pre-encounter predictions of DART impact ejecta behavior and observability. Planet. Sci. J. 3, 206 (2022). Hergenrother, C. W. et al. Photometry of particles ejected from active asteroid (101955) Bennu. J. Geophys. Res. Planets 125, 9 (2020). Pravec, P. & Harris, A. W. Binary asteroid population: 1. Angular momentum content. Icarus 190.1, 250–259 (2007). Lolachi, R., Gleanr, D. A., Stubbs, T. J. & Kolokolova, L. Optical characterization of the DART impact plume: importance of realistic ejecta scattering properties. Planet. Sci. J. 4, 24 (2023). Ferrari, F. et al. Trajectory Options for Hera’s Milani CubeSat Around (65803) Didymos. J. aeronaut. sci. 68, 973–994 (2021). United States Naval Observatory. The Astronomical Almanac for the Year 2024 (Government Printing Office and United Kingdom Hydrographic Office, 2023). Flynn, J. F. et al. Hypervelocity cratering and disruption of the Northwest Africa 869 ordinary chondrite meteorite: Implications for crater production, catastrophic disruption, momentum transfer and dust production on asteroids. Planet. Space Sci. 164, 91–105 (2018). Dunn, T. L., Burbine, T. H., Bottke, W. F. & Clack, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013). De Léon, J., Licandro, J., Duffard, R. & Serra-Ricart, M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv Space Res. 37, 178–183 (2006). Shampine, L. F., Allen Jr., R. C. & Pruess, S. Fundamentals of numerical computing (Wiley, Hoboken NJ, 1997). Hartley, R. & Zisserman. A. Multiple View Geometry in Computer Vision (Cambridge University Press, 2003).
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© The Authors 2025
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectAerospace engineering
dc.subjectAsteroids
dc.subjectComets
dc.subjectKuiper belt
dc.subjectAstronomy and astrophysics
dc.subjectRings and moons
dc.titleMorphology of ejecta features from the impact on asteroid Dimorphos
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumberPID2021-125883NB-C22
oaire.awardNumber870377
oaire.awardNumberPID2021-123370OB-I00
oaire.awardTitleIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
oaire.awardTitleNear Earth Object Modelling and Payloads for Protection
oaire.awardTitleCOMETARY AND ASTEROIDAL DUST SCIENCE
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1560
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1564
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1613
relation.isAuthorOfPublication22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isAuthorOfPublicationaacaf4b6-dd8b-4efe-8eab-286972560642
relation.isAuthorOfPublication.latestForDiscovery22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isProjectOfPublication66f1b32f-e228-410e-bcf6-ede7db21aa06
relation.isProjectOfPublication66336fb8-cefb-4a56-8675-99362082c44d
relation.isProjectOfPublication56c76cc5-df42-4aca-98f0-504b612700cd
relation.isProjectOfPublication.latestForDiscovery66f1b32f-e228-410e-bcf6-ede7db21aa06

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Morphology of ejecta features from the impact on asteroid Dimorphos.pdf
Tamaño:
7.78 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones