Publicación:
Rigid body motion in viscous flows using the finite element method

dc.contributor.authorHerreros, M. I.
dc.contributor.authorLingüérzana, S.
dc.contributor.orcidHerreros, M. I. [0000-0001-5284-8060]
dc.contributor.orcidLingüérzana, S. [0000-0002-5496-1291]
dc.contributor.otherUnidad de Excelencia Científica Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2021-04-12T10:53:18Z
dc.date.available2021-04-12T10:53:18Z
dc.date.issued2020-12-11
dc.description.abstractA new model for the numerical simulation of a rigid body moving in a viscous fluid flow using the finite element method is presented. One of the most interesting features of this approach is the small computational effort required to solve the motion of the rigid body, comparable to a pure fluid solver. The model is based on the idea of extending the fluid velocity inside the rigid body and solving the flow equations with a penalty term to enforce rigid motion inside the solid. In order to get the velocity field in the fluid domain, the Navier–Stokes equations for an incompressible viscous flow are solved using a fractional-step procedure combined with the two-step Taylor–Galerkin algorithm for the fractional linear momentum. Once the velocity field in the fluid domain is computed, calculation of the rigid motion is obtained by averaging translation and angular velocities over the solid. One of the main challenges when dealing with the fluid–solid interaction is the proper modeling of the interface that separates the solid moving mass from the viscous fluid. In this work, the combination of the level set technique and the two-step Taylor–Galerkin algorithm for tracking the fluid–solid interface is proposed. The characteristics exhibited by the two-step Taylor–Galerkin, minimizing oscillations and numerical diffusion, make this method suitable to accurately advect the solid domain, avoiding distortions at its boundaries and, thus, preserving the initial size and shape of the rigid body. The proposed model has been validated against empirical solutions, experimental data, and numerical simulations found in the literature. In all tested cases, the numerical results have shown to be accurate, proving the potential of the proposed model as a valuable tool for the numerical analysis of the fluid–solid interaction.es
dc.description.peerreviewedPeer reviewes
dc.description.sponsorshipM.I.H. would like to gratefully acknowledge financial support by the CSIC for i-LINK Project No. LINKA20203 and the Spanish State Research Agency (AEI) for Project No. MDM-2017-0737.es
dc.identifier.citationPhysics of FLuids 32(12): 10.1063/5.0029242(2020)es
dc.identifier.doi10.1063/5.0029242
dc.identifier.e-issn1089-7666
dc.identifier.issn1070-6631
dc.identifier.otherhttps://aip.scitation.org/doi/10.1063/5.0029242
dc.identifier.urihttp://hdl.handle.net/20.500.12666/260
dc.language.isoenges
dc.publisherThe American Institute of Physics: AIP Publishinges
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseRights managed by AIP Publishing.
dc.titleRigid body motion in viscous flows using the finite element methodes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acceso-restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.82 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones