Publicación: Successful kinetic impact into an asteroid for planetary defence
| dc.contributor.author | Terik Dalay, Ronald | |
| dc.contributor.author | Ernst, Carolyn | |
| dc.contributor.author | Barnouin, Oliver | |
| dc.contributor.author | Chabot, Nancy | |
| dc.contributor.author | Rivkin, Andrew | |
| dc.contributor.author | Cheng, Andrew | |
| dc.contributor.author | Adams, Elena | |
| dc.contributor.author | Agrusa, Harrison | |
| dc.contributor.author | Abdel, Elisabeth | |
| dc.contributor.author | Alford, Amy | |
| dc.contributor.author | Asphaug, Erik | |
| dc.contributor.author | Atchison, Justin | |
| dc.contributor.author | Badger, Andrew | |
| dc.contributor.author | Baki, Paul | |
| dc.contributor.author | Ballouz, Ronald | |
| dc.contributor.author | Bekker, Dmitriy | |
| dc.contributor.author | Bellerose, Julie | |
| dc.contributor.author | Bhaskaran, Shyam | |
| dc.contributor.author | Buratti, Bonnie | |
| dc.contributor.author | Cambioni, Saverio | |
| dc.contributor.author | Chen, Michelle | |
| dc.contributor.author | Chesley, Steven | |
| dc.contributor.author | Chiu, George | |
| dc.contributor.author | Collins, Gareth | |
| dc.contributor.author | Cox, Matthew | |
| dc.contributor.author | DeCoster, Mallory | |
| dc.contributor.author | Ericksen, Peter | |
| dc.contributor.author | Espiritu, Raymond | |
| dc.contributor.author | Faber, Alan | |
| dc.contributor.author | Farnham, Tony | |
| dc.contributor.author | Ferrari, Fabio | |
| dc.contributor.author | Fletcher, Zachary | |
| dc.contributor.author | Gaskell, Robert | |
| dc.contributor.author | Graninger, Dawn | |
| dc.contributor.author | Haque, Musad | |
| dc.contributor.author | Harrington Duff, Alicia | |
| dc.contributor.author | Hefter, Sarah | |
| dc.contributor.author | Herreros, Isabel | |
| dc.contributor.author | Hirabayashi, Masatoshi | |
| dc.contributor.author | Huang, Philip | |
| dc.contributor.author | Hsieh, Syau Yun | |
| dc.contributor.author | Jacobson, Seth | |
| dc.contributor.author | Jenkins, Stephen | |
| dc.contributor.author | Jensenius, Mark | |
| dc.contributor.author | John, Jeremy | |
| dc.contributor.author | Jutzi, Martin | |
| dc.contributor.author | Kohout, Tomas | |
| dc.contributor.author | Krueger, Timothy | |
| dc.contributor.author | Laipert, Frank | |
| dc.contributor.author | López, Norberto | |
| dc.contributor.author | Luther, Robert | |
| dc.contributor.author | Lucchetti, Alice | |
| dc.contributor.author | Mages, Declan | |
| dc.contributor.author | Marchi, Simone | |
| dc.contributor.author | Martín, Anna | |
| dc.contributor.author | McQuaide, Marie | |
| dc.contributor.author | Michel, Patrick | |
| dc.contributor.author | Moskovitz, Nicholas | |
| dc.contributor.author | Murphy, Ian | |
| dc.contributor.author | Murdoch, Naomi | |
| dc.contributor.author | Naidu, Shantanu | |
| dc.contributor.author | Nair, Hari | |
| dc.contributor.author | Nolan, Michael | |
| dc.contributor.author | Ormö, Jens | |
| dc.contributor.author | Pajola, Maurizio | |
| dc.contributor.author | Palmer, Eric | |
| dc.contributor.author | Peachey, James | |
| dc.contributor.author | Pravec, Petr | |
| dc.contributor.author | Raducan, Sabina | |
| dc.contributor.author | Ramesh, K. T. | |
| dc.contributor.author | Ramirez, Joshua | |
| dc.contributor.author | Reynolds, Edward | |
| dc.contributor.author | Richman, Joshua | |
| dc.contributor.author | Robin, Colas | |
| dc.contributor.author | Rodríguez, Luis | |
| dc.contributor.author | Roufberg, Lew | |
| dc.contributor.author | Rush, Brian | |
| dc.contributor.author | Sawyer, Carolyn | |
| dc.contributor.author | Scheeres, Daniel | |
| dc.contributor.author | Scheirich, Petr | |
| dc.contributor.author | Schwartz, Stephen | |
| dc.contributor.author | Shannon, Matthew | |
| dc.contributor.author | Shapiro, Brett | |
| dc.contributor.author | Shearer, Caitlin | |
| dc.contributor.author | Smith, Eva | |
| dc.contributor.author | Steele, Joshua | |
| dc.contributor.author | Steckloff, Jordan | |
| dc.contributor.author | Stickle, Angela | |
| dc.contributor.author | Sunshine, Jessica | |
| dc.contributor.author | Superfin, Emil | |
| dc.contributor.author | Tarzi, Zahi | |
| dc.contributor.author | Thomas, Cristina | |
| dc.contributor.author | Thomas, Justin | |
| dc.contributor.author | Trigo Rodríguez, Josep M. | |
| dc.contributor.author | Tropf, Teresa | |
| dc.contributor.author | Vaughan, Andrew | |
| dc.contributor.author | Velez, Dianna | |
| dc.contributor.author | Waller, Dany | |
| dc.contributor.author | Wilson, Daniel | |
| dc.contributor.author | Wortman, Kristin | |
| dc.contributor.author | Zhang, Yun | |
| dc.contributor.funder | Swiss National Science Foundation (SNSF) | |
| dc.contributor.funder | European Commission (EC) | |
| dc.contributor.funder | National Aeronautics and Space Administration (NASA) | |
| dc.contributor.funder | Centre National d’Etudes Spatiales (CNES) | |
| dc.contributor.funder | Agencia Estatal de Investigación (AEI) | |
| dc.contributor.other | Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737 | |
| dc.date.accessioned | 2025-12-04T06:47:19Z | |
| dc.date.available | 2025-12-04T06:47:19Z | |
| dc.date.issued | 2023-03-01 | |
| dc.description | Daly, R.T., Ernst, C.M., Barnouin, O.S. et al. Successful kinetic impact into an asteroid for planetary defence. Nature 616, 443–447 (2023). https://doi.org/10.1038/s41586-023-05810-5 | |
| dc.description.abstract | Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation. NASA’s Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission’s target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft. Although past missions have utilized impactors to investigate the properties of small bodies, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft’s autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary. | |
| dc.description.peerreviewed | Peerreview | |
| dc.description.sponsorship | We thank P. Boie, R. Harvey, M. Hill, A. Johnson, C. Kim, J. Kim, D. O’Shaughnessy, N. Osiander, G. Ottman, L. Rodovskiy, M. Rodriguez, A. Smith, K. Volland and all of the other people who made the DART impact possible; and M. Bruck Syal and K. Kumamoto for their feedback on the manuscript. This work made use of the Small Body Mapping Tool. This work was supported by the DART mission, NASA Contract No. 80MSFC20D0004. This work was supported by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement AC n. 2019-31-HH.0). P.S. and P.P. were supported by the Grant Agency of the Czech Republic, grant 20-04431S. B.J.B. was funded by the NASA DART Participating Scientist Program #20-DARTPSP20-0007. S.C. acknowledges funding from the Crosby Distinguished Postdoctoral Fellowship Program of the Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology. G.S.C. was funded by UK Science and Technology Facilities Council Grant ST/S000615/1. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione grant No. 193346. M.J. and S.D.R. acknowledge support by the Swiss National Science Foundation (project number 200021_207359), and from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 870377 (project NEO-MAPP). T.K. is supported by Academy of Finland project 335595 and by institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences. P.M. acknowledges funding support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 870377 (project NEO-MAPP), the CNRS through the MITI interdisciplinary programmes, CNES and ESA. N.M. and C.Q.R. acknowledge funding support from the European Commission’s Horizon 2020 research and innovation programme under grant agreement no. 870377 (NEO-MAPP project) and support from the Centre National d’Etudes Spatiales (CNES). J.O. has been funded by grant No. PID2021-125883NB-C22 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033 and by ‘ERDF A way of making Europe’. S.R.S. acknowledges support from the NASA DART Participating Scientist Program, award no. 80NSSC22K0318. J.K.S. acknowledges support from NASA award 80NSSC21K1014. J.M.T.-R. acknowledges financial support from the project PID2021-128062NB-I00 funded by Spanish MCIN/AEI/10.13039/501100011033. P.B. acknowledges funding support from Europlanet/University of Edinburgh and Technical University of Kenya. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. | |
| dc.identifier.citation | Nature 616: 443-447 | |
| dc.identifier.doi | 10.1038/s41586-023-05810-5 | |
| dc.identifier.issn | 1476-4687 | |
| dc.identifier.other | https://www.nature.com/articles/s41586-023-05810-5 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12666/1567 | |
| dc.language.iso | eng | |
| dc.publisher | Springer | |
| dc.relation | IMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS | |
| dc.relation | Near Earth Object Modelling and Payloads for Protection | |
| dc.relation | PROPIEDADES FISICO-QUIMICAS DE ASTEROIDES Y COMETAS A PARTIR DEL ESTUDIO EN EL LABORATORIO DE METEORITOS Y MUESTRAS RETORNADAS | |
| dc.relation.isreferencedby | Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies (National Academies Press, 2010); https://doi.org/10.17226/12842. Interagency Working Group for Detecting and Mitigating the Impact of Earth-bound Near-Earth Objects National Near-Earth Object Preparedness Strategy and Action Plan (United States National Science & Technology Council, 2018). Committee on the Planetary Science and Astrobiology Decadal Survey, Space Studies Board, Division on Engineering and Physical Sciences & National Academies of Sciences, Engineering, and Medicine Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022); https://doi.org/10.17226/26522. Rivkin, A. S. et al. The Double Asteroid Redirection Test (DART): planetary defense investigations and requirements. Planet. Sci. J. 2, 173 (2021). A’Hearn, M. F. et al. Deep impact: excavating comet Tempel 1. Science 310, 258–264 (2005). Arakawa, M. et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science 368, 67–71 (2020). Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature https://doi.org/10.1038/s41586-023-05805-2 (2023). Fletcher, Z. J. et al. Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO): design, fabrication, test, and operation. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave (eds Coyle, L. E. et al.) 121800E (SPIE, 2022); https://doi.org/10.1117/12.2627873. Rush, B. P. et al. Optical navigation for the DART mission. In 33rd AAS/AIAA Space Flight Mechanics Meeting AAS 23-234 (2023). Adams, E. et al. Double Asteroid Redirection Test: the Earth strikes back. In 2019 IEEE Aerospace Conference 1–11 (IEEE, 2019); https://doi.org/10.1109/AERO.2019.8742007. Bekker, D., Smith, R. & Tran, M. Q. Guiding DART to impact—the FPGA SoC design of the DRACO image processing pipeline. In 2021 IEEE Space Computing Conference 122–133 (IEEE, 2021); https://doi.org/10.1109/SCC49971.2021.00020. Naidu, S. P. et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus 348, 113777 (2020). Pravec, P. et al. Photometric observations of the binary near-Earth asteroid (65803) Didymos in 2015–2021 prior to DART impact. Planet. Sci. J. 3, 175 (2022). Scheirich, P. & Pravec, P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 3, 163 (2022). Zuber, M. T. et al. The shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder. Science 289, 2097–2101 (2000) Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top–shaped rubble pile. Science 364, 268–272 (2019). Fujiwara, A. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006). Huang, J. et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2. Sci Rep. 3, 3411 (2013). Barnouin, O. S. et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. 12, 247–252 (2019). Ostro, S. J. et al. Radar imaging of binary near-Earth asteroid (66391) 1999 KW4. Science 314, 1276–1280 (2006). Becker, T. M. et al. Physical modeling of triple near-Earth asteroid (153591) 2001 SN263 from radar and optical light curve observations. Icarus 248, 499–515 (2015). Naidu, S. P. et al. Radar imaging and characterization of the binary near-Earth Asteroid (185851) 2000 DP107. Astron. J 150, 54 (2015). Pravec, P. et al. Binary asteroid population. 3. Secondary rotations and elongations. Icarus 267, 267–295 (2016). Pravec, P., Harris, A. W., Kušnirák, P., Galád, A. & Hornoch, K. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus 221, 365–387 (2012). Stickle, A. M. et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 3, 248 (2022). Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019). Hirata, N. et al. A survey of possible impact structures on 25143 Itokawa. Icarus 200, 486–502 (2009). Barnouin, O. S., Daly, R. T., Cintala, M. J. & Crawford, D. A. Impacts into coarse-grained spheres at moderate impact velocities: implications for cratering on asteroids and planets. Icarus 325, 67–83 (2019). Hirata, N. et al. The spatial distribution of impact craters on Ryugu. Icarus 338, 113527 (2020). Daly, R. T. et al. The morphometry of impact craters on Bennu. Geophys. Res. Lett. 47, e2020GL089672 (2020). Jawin, E. R. et al. Global patterns of recent mass movement on asteroid (101955) Bennu. J. Geophys. Res. Planets 125, e2020JE006475 (2020). Tatsumi, E. & Sugita, S. Cratering efficiency on coarse-grain targets: implications for the dynamical evolution of asteroid 25143 Itokawa. Icarus 300, 227–248 (2018). Okawa, H. et al. Effect of boulder size on ejecta velocity scaling law for cratering and its implication for formation of tiny asteroids. Icarus 387, 115212 (2022). Ormö, J. et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids. Earth Planet. Sci. Lett. 594, 117713 (2022). Raducan, S. D., Jutzi, M., Zhang, Y., Ormö, J. & Michel, P. Reshaping and ejection processes on rubble-pile asteroids from impacts. Astron. Astrophys. 665, L10 (2022). de León, J., Licandro, J., Duffard, R. & Serra-Ricart, M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res. 37, 178–183 (2006). Dunn, T. L., Burbine, T. H., Bottke, W. F. & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013). Flynn, G. J., Consolmagno, G. J., Brown, P. & Macke, R. J. Physical properties of the stone meteorites: implications for the properties of their parent bodies. Geochemistry 78, 269–298 (2018). Michel, P. et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J. 3, 160 (2022). Gaskell, R. W. et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43, 1049–1061 (2008). Barnouin, O. S. et al. Digital terrain mapping by the OSIRIS-REx mission. Planet. Space Sci. 180, 104764 (2020). Palmer, E. E. et al. Practical stereophotoclinometry for modeling shape and topography on planetary missions. Planet. Sci. J. 3, 102 (2022). Daly, R. T. et al. Shape modeling of Dimorphos for the Double Asteroid Redirection Test (DART). Planet. Sci. J. 3, 207 (2022). Al Asad, M. M. et al. Validation of stereophotoclinometric shape models of asteroid (101955) Bennu during the OSIRIS-REx mission. Planet. Sci. J. 2, 82 (2021). Barnouin-Jha, O. S. et al. Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus 198, 108–124 (2008). Burke, K. N. et al. Particle size–frequency distributions of the OSIRIS-REx candidate sample sites on asteroid (101955) Bennu. Remote Sens. 13, 1315 (2021). Pajola, M. et al. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov–Gerasimenko. Astron. Astrophys. 583, A37 (2015). Agrusa, H. F. et al. The excited spin state of Dimorphos resulting from the DART impact. Icarus 370, 114624 (2021) Scheirich, P. et al. A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL—indication of the BYORP effect. Icarus 360, 114321 (2021). | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Copyright © 2023, The Author(s) | |
| dc.title | Successful kinetic impact into an asteroid for planetary defence | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.awardNumber | PID2021-125883NB-C22 | |
| oaire.awardNumber | 870377 | |
| oaire.awardNumber | PID2021-128062NB-I00 | |
| oaire.awardTitle | IMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS | |
| oaire.awardTitle | Near Earth Object Modelling and Payloads for Protection | |
| oaire.awardTitle | PROPIEDADES FISICO-QUIMICAS DE ASTEROIDES Y COMETAS A PARTIR DEL ESTUDIO EN EL LABORATORIO DE METEORITOS Y MUESTRAS RETORNADAS | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1560 | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1564 | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1566 | |
| relation.isAuthorOfPublication | aacaf4b6-dd8b-4efe-8eab-286972560642 | |
| relation.isAuthorOfPublication | 22ae43e3-7c23-4b62-b894-3ad15fa05444 | |
| relation.isAuthorOfPublication.latestForDiscovery | aacaf4b6-dd8b-4efe-8eab-286972560642 | |
| relation.isProjectOfPublication | 66f1b32f-e228-410e-bcf6-ede7db21aa06 | |
| relation.isProjectOfPublication | 66336fb8-cefb-4a56-8675-99362082c44d | |
| relation.isProjectOfPublication | e7365282-fd0a-4bc8-b0c1-5feeeff43468 | |
| relation.isProjectOfPublication.latestForDiscovery | 66f1b32f-e228-410e-bcf6-ede7db21aa06 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Successful kinetic impact into an asteroid for planetary defence.pdf
- Tamaño:
- 22.1 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 4.77 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:










