Publicación:
Effect of Target Layering in Gravity-Dominated Cratering in Nature, Experiments, and Numerical Simulations

dc.contributor.authorOrmö, Jens
dc.contributor.authorRaducan, S. D.
dc.contributor.authorHousen, K. R.
dc.contributor.authorWünnemann, K.
dc.contributor.authorCollins, Gareth
dc.contributor.authorRossi, Angelo Pio
dc.contributor.authorMelero-Asensio, Irene
dc.contributor.funderConsejo Superior de Investigaciones Científicas (CSIC)
dc.contributor.funderAgencia Estatal de Investigación (AEI)
dc.contributor.funderEuropean Research Council (ERC)
dc.contributor.otherCentro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2025-12-04T07:03:25Z
dc.date.available2025-12-04T07:03:25Z
dc.date.issued2024-04-26
dc.descriptionConcentric impact craters show a “soup-plate” or “inverted sombrero” shape that forms on planetary surfaces with distinct subsurface layers. Generally, a deep inner crater forms in the substrate and a shallower, broader outer crater forms in the upper layer. The shape is obtained either from extensive post-impact collapse of the upper, often weaker layer, or already during crater excavation, which is the focus of this study. The ratio of outer to inner diameter in the latter craters can be used to probe the depth of the upper layer and the contrast in material properties to the substrate. However, the controls on the relative size of the inner and outer craters are not well understood. While the formation of natural concentric craters is often attributed to a change in cohesive strength between the upper and lower layers, we show through impact experiments and numerical simulations that concentric craters can also form in cohesionless targets with a contrast in both density and friction coefficient between the layers. This provides an additional mechanism for concentric crater formation that may explain the development of some large, gravity-dominated, naturally occurring concentric craters on Earth, Mars and elsewhere. Key Points Concentric craters are not only due to strength differences between layers but also observed in cohesionless, gravity-dominated targets This may explain the occurrence of large gravity-dominated concentric craters on Earth, Mars and elsewhere Key factors affecting the concentric growth in these cases are the density and internal friction of each target layer, respectively
dc.description.abstractImpacts into layered targets may generate “concentric craters” where a wider outer crater in the top layer surrounds a smaller, nested crater in the basement, which itself may be complex or simple. The influence of target on cratering depends on the ratio of target strength to lithostatic stress, which, in turn, is affected by gravity, target density, and crater diameter. When this ratio is large, the crater size is primarily determined by target strength, whereas gravitational forces dominate when the ratio is small. In two-layer targets, strength may dominate in one or both layers, whereby the outer crater develops in the weaker top layer and the nested crater in the stronger substrate. However, large natural craters that should be gravity-dominated in both cover strata and substrate may be concentric, the reasons for which are not yet fully understood. We performed qualitative impact experiments at 10–502 G and 1.8 km/s with the Boeing Corp. Hypervelocity centrifuge gun, and at 1 G and 0.4 km/s with the CAB CSIC-INTA gas gun into layered sand targets of different compositions and grain densities but similar granulometry to analyze gravity-dominated cratering. The results are compared with iSALE-2D numerical simulations and natural craters on Earth and Mars. We show that target layering also affects the excavation process and concentric crater formation in gravity-dominated impacts. The most important factors are the density and internal friction of each target layer, respectively. We propose that this is also valid for natural craters of sizes that should make their formation gravity-dominated.
dc.description.peerreviewedPeerreview
dc.identifier.citationJournal of Geophysical Research: Planets 129(5): e2023JE008110
dc.identifier.e-issn2169-9100
dc.identifier.issn2169-9097
dc.identifier.issn10.1029/2023JE008110
dc.identifier.otherhttps://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JE008110
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1569
dc.language.isoeng
dc.publisherAGU Publishing
dc.relationIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
dc.relationNear Earth Object Modelling and Payloads for Protection
dc.relation.isreferencedbyAmsden, A. A., Ruppel, H. M., & Hirt, C. W. (1980). SALE: A simplified ALE computer program for fluid flow at all speeds Technical Report LA‐8095 (p. 5176006). Anderson, J. L. B., Cintala, M. J., Cline, C. J., Dechant, L. E., Ebel, J. M., Taitano, R. A., & Plescia, J. B. (2020). Experimental impacts into strength‐layered targets: Ejecta kinematics. In Lunar and Planetary Science Conference (Vol. 2820). Bart, G. D., Nickerson, R. D., Lawder, M. T., & Melosh, H. J. (2011). Global survey of lunar regolith depths from LROC images. Icarus, 215(2), 485–490. https://doi.org/10.1016/j.icarus.2011.07.017 Becker, K. J., Anderson, J. A., Sides, S. C., Miller, E. A., Eliason, E. M., & Keszthelyi, L. P. (2007). Processing HiRISE images using ISIS3. In Lunar and Planetary Science Conference (Vol. 1338, p. 1779). Beyer, R. A., Alexandrov, O., & McMichael, S. (2018). The ames stereo pipeline: NASA’s open source software for deriving and processing terrain data. Earth and Space Science, 5(9), 537–548. https://doi.org/10.1029/2018ea000409 Bramson, A. M., Byrne, S., & Bapst, J. (2017). Preservation of midlatitude ice sheets on Mars. Journal of Geophysical Research: Planets, 122(11), 2250–2266. https://doi.org/10.1002/2017JE005357 Bramson, A. M., Byrne, S., Putzig, N. E., Sutton, S., Plaut, J. J., Brothers, T. C., & Holt, J. W. (2015). Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters, 42(16), 6566–6574. https://doi.org/10.1002/2015gl064844 Cline, C. J., & Cintala, M. J. (2022). The effects of target density, porosity, and friction on impact crater morphometry: Exploratory experimentation using various granular materials. Meteoritics & Planetary Sciences, 57(7), 1441–1459. https://doi.org/10.1111/maps.13886 Collins, G. S., Melosh, H. J., & Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations. Meteoritics & Planetary Sciences, 39(2), 217–231. https://doi.org/10.1111/j.1945‐5100.2004.tb00337.x Collins, G. S., Melosh, H. J., & Wünnemann, K. (2011). Improvements to the epsilon‐alpha porous compaction model for simulating impacts into high‐porosity solar system objects. International Journal of Impact Engineering, 38(6), 434–439. https://doi.org/10.1016/j.ijimpeng.2010. 10.013 Collins, G. S., & Wünnemann, K. (2005). How big was the Chesapeake Bay impact? Insight from numerical modelling. Geology, 33(12), 925–928. https://doi.org/10.1130/g21854.1 Daubar, I. J., Atwood‐Stone, C., Byrne, S., McEwen, A. S., & Russell, P. S. (2014). The morphology of small fresh craters on Mars and the Moon. Journal of Geophysical Research: Planets, 119(12), 2620–2639. https://doi.org/10.1002/2014je004671 Elbeshausen, D., Wünnemann, K., & Collins, G. S. (2009). Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus, 204(2), 716–731. https://doi.org/10.1016/j.icarus.2009.07.018 Fa, W., Liu, T., Zhu, M.‐H., & Haruyama, J. (2014). Regolith thickness over Sinus Iridum: Results from morphology and size‐frequency distribution of small impact craters. Journal of Geophysical Research: Planets, 119(8), 1914–1935. https://doi.org/10.1002/2013je004604 Henych, T., & Holsapple, K. A. (2018). Interpretations of family size distributions: The Datura example. Icarus, 304, 127–134. https://doi.org/10. 1016/j.icarus.2017.05.018 Holsapple, K. A. (1980). The equivalent depth of burst for impact cratering. Lunar and Planetary Science Conference (11 ed., pp. 2379–2401). Holsapple, K. A. (1993). The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Sciences, 21(1), 333–373. https://doi.org/10.1146/annurev.earth.21.1.333 Holsapple, K. A., & Schmidt, R. M. (1982). On the scaling of crater dimensions. II—Impact processes. Journal of Geophysical Research, 87(B3), 1849–1870. https://doi.org/10.1029/jb087ib03p01849 Holsapple, K. A., & Schmidt, R. M. (1987). Point source solutions and coupling parameters in cratering mechanics. Journal of Geophysical Research, 92(B7), 6350–6376. https://doi.org/10.1029/jb092ib07p06350 Horton, J. W., Jr., Ormö, J., Powars, D. S., & Gohn, G. S. (2006). Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars. Meteoritics & Planetary Sciences, 41(10), 1613–1624. https://doi.org/10.1111/j.1945‐5100.2006.tb00439.x Horton, J. W., Jr., Powars, D. S., & Gohn, G. S. (2005). Studies of the Chesapeake Bay impact structure—Introduction and discussion. In J. W. Horton, Jr., D. S. Powars, & G. S. Gohn (Eds.), Studies of the Chesapeake Bay impact structure—The USGS‐NASA Langley corehole, Hampton, Virginia, and related coreholes and geophysical surveys. U.S. Geological Survey Professional Paper 1688: A1‐A24. chap. A. Housen, K. R., & Holsapple, K. A. (2003). Impact cratering on porous asteroids. Icarus, 163(1), 102–119. https://doi.org/10.1016/s0019‐1035(03) 00024‐1 Housen, K. R., Schmidt, R. M., & Holsapple, K. A. (1983). Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. Journal of Geophysical Research, 88(B3), 2485–2499. https://doi.org/10.1029/jb088ib03p02485 Housen, K. R., Sweet, W. J., & Holsapple, K. A. (2018). Impacts into porous asteroids. Icarus, 300, 72–96. https://doi.org/10.1016/j.icarus.2017. 08.019 Ivanov, B. A., & Artemieva, N. A. (2002). Numerical modeling of the formation of large impact craters. In Geological Society of America Special Paper (Vol. 356, pp. 619–630). https://doi.org/10.1130/0‐8137‐2356‐6.619 Ivanov, B. A., Deniem, D., & Neukum, G. (1997). Implementation of dynamic strength models into 2d hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering, 20(1), 411–430. https://doi.org/10.1016/s0734‐743x(97)87511‐2 Kenkmann, T., Collins, G. S., Wittmann, A., Wünnemann, K., Reimold, W. U., & Melosh, H. J. (2009). A model for the formation of the Chesapeake Bay impact crater as revealed by drilling and numerical simulation. In Geological Society of America Special Papers(Vol. 458, pp. 571–585). https://doi.org/10.1130/2009.2458(25) Lindström, M., Ormö, J., Sturkell, E., & Dalwigk, I. (2005). The Lockne Crater: Revision and reassessment ofstructure and impactstratigraphy. In C. Koeberl & H. Henkel (Eds.), Impact tectonics (pp. 357–388). Springer. Lindström, M., Shuvalov, V., & Ivanov, B. (2005). Lockne crater as a result of marine‐target oblique impact. Planetary and Space Science, 53(8), 803–815. https://doi.org/10.1016/j.pss.2005.02.005 Malin, M. C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., et al. (2007). Context camera investigation on board the Mars reconnaissance orbiter. Journal of Geophysical Research, 112(E5), E05S04. https://doi.org/10.1029/2006je002808 Martellato, E., Bramson, A. M., Cremonese, G., Lucchetti, A., Marzari, F., Massironi, M., et al. (2020). Martian ice revealed by modeling of simple terraced crater formation. Journal of Geophysical Research: Planets, 125(10), e2019JE006108. https://doi.org/10.1029/2019je006108 McEwen, A. S., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere, W. A., et al. (2007). Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE). Journal of Geophysical Research, 112(E5). https://doi.org/10.1029/2005JE002605 Melosh, H. J. (1989). Impact cratering: A geologic process. In Oxford monographs on geology and geophysics (p. 245). Oxford University Press. Melosh, H. J. (2007). A hydrocode equation of state for SiO2. Meteoritics & Planetary Sciences, 42(12), 2079–2098. https://doi.org/10.1111/j. 1945‐5100.2007.tb01009.x Melosh, J., & Ivanov, B. (1999). Impact crater collapse. Annual Review of Earth and Planetary Sciences, 27(1), 385–415. https://doi.org/10.1146/ annurev.earth.27.1.385 Moratto, Z. M., Broxton, M. J., Beyer, R. A., Lundy, M., & Husmann, K. (2010). Ames stereo pipeline, NASA's open source automated stereogrammetry software. In 41st lunar and planetary science conference 2364. Morgan, G. A., Putzig, N. E., Perry, M. R., Sizemore, H. G., Bramson, A. M., Petersen, E. I., et al. (2021). Availability of subsurface water‐ice resources in the northern mid‐latitudes of Mars. Nature Astronomy, 5(3), 230–236. https://doi.org/10.1038/s41550‐020‐01290‐z Oberbeck, V. R., & Quaide, W. L. (1967). Estimated thickness of a fragmental surface layer of Oceanus Procellarum. Journal of Geophysical Research, 72(18), 4697–4704. https://doi.org/10.1029/jz072i018p04697 Oberbeck, V. R., & Quaide, W. L. (1968). Genetic implications of lunar regolith thickness variations. Icarus, 9(1–3), 446–465. https://doi.org/10. 1016/0019‐1035(68)90039‐0. Öhman, T., Aittola, M., Korteniemi, J., Kostama, V.‐P., & Raitala, J. (2010). Polygonal impact craters in the solar system: Observations and implications. In R. L. Gibson & W. U. Reimold (Eds.), Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper (Vol. 465). Geological Society of America. https://doi.org/10.1130/2010.2465(04) Ormö, J., Lepinette, A., Sturkell, E., Lindström, M., Housen, K. R., & Holsapple, K. A. (2010). The water resurge at marine‐target impact craters analyzed with a combination of low‐velocity impact experiments and numerical simulations. In R. L. Gibson & W. U. Reimold (Eds.), Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper (Vol. 465, pp. 81–101). https://doi.org/10.1130/ 2010.2465(06) Ormö, J., Lindström, M., Lepinette, A., Martinez‐Frias, J., & Diaz‐Martinez, E. (2006). Cratering and modification of wet target craters: Projectile impact experiments and field observations of the Lockne marine‐target crater (Sweden). Meteoritics & Planetary Sciences, 41(10), 1605–1612. https://doi.org/10.1111/j.1945‐5100.2006.tb00438.x Ormö, J., Melero‐Asensio, I., Housen, K. R., Wünnemann, K., Elbeshausen, D., & Collins, G. S. (2015). Scaling and reproducibility of craters produced at the Experimental Projectile Impact Chamber (EPIC), Centro de Astrobiologia Spain. Meteoritics & Planetary Sciences, 50(12), 2067–2086. https://doi.org/10.1111/maps.12560 Ormö, J., Raducan, S. D., Housen, K. R., Wünnemann, K., Collins, G. S., Rossi, A. P., & Melero‐Asensio, I. (2023). sr516/Concentric_craters: v1.0 [Data repository]. https://doi.org/10.5281/zenodo.10869984 Ormö, J., Rossi, A. P., & Housen, K. R. (2013). A new method to determine the direction of impact: Asymmetry of concentric impact craters as observed in the field (Lockne), on Mars, in experiments, and simulations. Meteoritics & Planetary Sciences, 48(3), 403–419. https://doi.org/10. 1111/maps.12065 Ormö, J., Sturkell, E., Nõlvak, J., Melero‐Asensio, I., Frisk, Å., & Wikström, T. (2014). The geology of the Målingen structure: A probable doublet to the Lockne marine‐target impact crater, central Sweden. Meteoritics & Planetary Sciences, 49(3), 313–327. https://doi.org/10.1111/ maps.12251 Peel, S. E., Burr, D. M., & Tran, L. (2019). Formation of central pits in impact craters on Mars: A statistical investigation of proposed mechanisms. Journal of Geophysical Research: Planets, 124(2), 437–453. https://doi.org/10.1029/2018JE005738 Piekutowski, A. J. (1977). Cratering mechanisms observed in laboratory‐scale high explosive experiments. In D. J. Roddy, R. O. Pepin, & R. B. Merrill (Eds.), Impact and explosion cratering (pp. 67–102). Pergamon Press. Poag, C. W., Koeberl, C., & Reimold, W. U. (2004). The Chesapeake Bay impact crater—Geology and geophysics of a late eocene submarine impact structure (p. 522). Springer‐Verlag. Prieur, N. C., Rolf, T., Wünnemann, K., & Werner, S. C. (2018). Formation of simple impact craters in layered targets: Implications for lunar crater morphology and regolith thickness. Journal of Geophysical Research: Planets, 123(6), 1555–1578. https://doi.org/10.1029/ 2017JE005463 Quaide, W. L., & Oberbeck, V. R. (1968). Thickness determinations of the lunar surface layer from lunar impact craters. Journal of Geophysical Research, 73(16), 5247–5270. https://doi.org/10.1029/jb073i016p05247 Raducan, S. D., Davison, T. M., & Collins, G. S. (2020). Morphological diversity of impact craters on asteroid (16) psyche: Insight from numerical models. Journal of Geophysical Research: Planets, 9, e2020JE006466. https://doi.org/10.1029/2020je006466 Raducan, S. D., Davison, T. M., Luther, R., & Collins, G. S. (2019). The role of asteroid strength, porosity and internal friction in impact momentum transfer. Icarus, 329, 282–295. https://doi.org/10.1016/j.icarus.2019.03.040 Rajšić, A., Miljković, K., Wójcicka, N., Collins, G. S., Garcia, R. F., Bredemeyer, C., et al. (2023). Seismic efficiency and seismic moment for small craters on Mars formed in the layered uppermost crust. Journal of Geophysical Research: Planets, 128(4). https://doi.org/10.1029/ 2022JE007698 Schmidt, R. M. (1980). Meteor Crater: Energy of formation—Implications of centrifuge scaling. In Lunar and Planetary Science Conference, 11th, Houston, TX, March 17‐21, 1980, Proceedings. Volume 3. (A82‐22351 09‐91) (pp. 2099–2128). Pergamon Press. Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28(1), 1–15. https://doi.org/10.1007/bf01024770 Shuvalov, V., Ormö, J., & Lindström, M. (2005). Hydrocode Simulation of the Lockne marine target impact event. In C. Koeberl & H. Henkel (Eds.), Impact tectonics (pp. 405–422). Springer. Sides, S. C., Becker, T. L., Becker, K. J., Edmundson, K. L., Backer, J. W., Wilson, T. J., et al. (2017). The USGS Integrated Software for Imagers and Spectrometers (ISIS 3) instrument support, new capabilities, and releases. In Lunar and Planetary Science Conference, No. 1964 (p. 2739). Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., et al. (2001). Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106(E10), 23689–23722. https://doi.org/10.1029/ 2000JE001364 Sturkell, E., Ormö, J., Hegardt, E. A., Stockmann, G., Meland, E., & Wikström, T. (2023). The proximal ejecta around the marine‐target Lockne impact structure, Sweden. Journal of Geophysical Research: Planets, 128(7), e2023JE007777. https://doi.org/10.1029/2023JE007777 Sturkell, E., Ormö, J., & Lepinette, A. (2013). Early modification stage (preresurge) sediment mobilization in the Lockne concentric, marine‐ target crater, Sweden. Meteoritics and Planetary Sciences, 48(3), 321–338. https://doi.org/10.1111/maps.12058 Tillotson, H. J. (1962). Metallic equations of state for hypervelocity impact General Atomic Report, GA‐3216 (p. 141). Viola, D., McEwen, A. S., Dundas, C. M., & Byrne, S. (2015). Expanded secondary craters in the Arcadia Planitia region, Mars: Evidence for tens of Myr‐old shallow subsurface ice. Icarus, 248, 190–204. https://doi.org/10.1016/j.icarus.2014.10.032 Wu, B., Wang, Y., Werner, S. C., Prieur, N. C., & Xiao, Z. (2022). A global analysis of crater depth/diameter ratios on the moon. Geophysical Research Letters, 49(20), e2022GL100886. https://doi.org/10.1029/2022GL100886 Wünnemann, K., Collins, G. S., & Melosh, H. J. (2006). A strain‐based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180(2), 514–527. https://doi.org/10.1016/j.icarus.2005.10.013 Wünnemann, K., Zhu, M.‐H., & Stöffler, D. (2016). Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models. Meteoritics & Planetary Sciences, 51(10), 1762–1794. https://doi.org/10.1111/maps.12710 Yue, Z., Di, K., Liu, Z., Michael, G., Jia, M., Xin, X., et al. (2019). Lunar regolith thickness deduced from concentric craters in the CE‐5 landing area. Icarus, 329, 46–54. https://doi.org/10.1016/j.icarus.2019.03.032
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.license© 2024. American Geophysical Union
dc.subjectGravity‐Dominated Cratering
dc.subjectNumerical Simulations
dc.titleEffect of Target Layering in Gravity-Dominated Cratering in Nature, Experiments, and Numerical Simulations
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumberPID2021-125883NB-C22
oaire.awardNumber870377
oaire.awardTitleIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
oaire.awardTitleNear Earth Object Modelling and Payloads for Protection
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1560
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1564
relation.isAuthorOfPublication22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isAuthorOfPublicationf987705f-6526-492b-924f-8ce57fd5bf69
relation.isAuthorOfPublication.latestForDiscovery22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isProjectOfPublication66f1b32f-e228-410e-bcf6-ede7db21aa06
relation.isProjectOfPublication66336fb8-cefb-4a56-8675-99362082c44d
relation.isProjectOfPublication.latestForDiscovery66f1b32f-e228-410e-bcf6-ede7db21aa06

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
01- Acceso Restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones