Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/780
Registro completo de metadatos
Campo DC Valor Idioma
dc.rights.license© corresponding author Antonio Jurado Lucenaes
dc.contributor.authorJurado Lucena, A.es
dc.contributor.authorMontiel, I.es
dc.contributor.authorEscot Bocanegra, D.es
dc.contributor.authorPoyatos Martínez, D.es
dc.date.accessioned2022-09-23T07:37:50Z-
dc.date.available2022-09-23T07:37:50Z-
dc.date.issued2011-05-27-
dc.identifier.citationProgress in Electromagnetics Research C 21: 243-255es
dc.identifier.issn1937-8718-
dc.identifier.otherhttps://www.jpier.org/pierc/pier.php?paper=11030206es
dc.identifier.urihttp://hdl.handle.net/20.500.12666/780-
dc.description.abstractNon-Cooperative Target Recognition (NCTR) of aircrafts from radar measurements is a formidable problem that has drawn the attention of engineers and scientists over the last years. NCTR techniques typically involve a database with a huge amount of information from different known targets and a reliable identification algorithm able to highlight the likeness between measured and stored data. This paper uses High Resolution Range Profiles produced with a high-frequency software tool to train Arti cial Neural Networks for distinguishing between different classes of aircrafts. Actual data from the ORFEO measurement campaign are used to assess the performance of the trained networks.es
dc.description.sponsorshipThe authors would like to thank the members of NATO-RTO SET112 Task Group on “Advanced analysis and Recognition of Radar Signatures for Non-Cooperative Target Identification”, for their helpful discussions and for the availability of actual data obtained through the measurements campaigns organized in the framework of this group. The work presented in this paper has been supported by INTA under the Electronic Warfare and Non-Cooperative Target Identification project.es
dc.language.isoenges
dc.publisherThe EM Academyes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.titleClass Identification of Aircrafts by Means of Artificial Neural Networks Trained with Simulated Radar Signatures.es
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.2528/PIERC11030206-
dc.contributor.funderInstituto Nacional de Técnica Aeroespacial (INTA)es
dc.description.peerreviewedPeerreviewes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es
Aparece en las colecciones: (Espacio) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
19.11030206.pdf768,26 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons