Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12666/780
Título : | Class Identification of Aircrafts by Means of Artificial Neural Networks Trained with Simulated Radar Signatures. |
Autor : | Jurado Lucena, A. Montiel, I. Escot Bocanegra, D. Poyatos Martínez, D. |
Fecha de publicación : | 27-may-2011 |
Editorial : | The EM Academy |
DOI: | 10.2528/PIERC11030206 |
Versión del Editor: | https://www.jpier.org/pierc/pier.php?paper=11030206 |
Citación : | Progress in Electromagnetics Research C 21: 243-255 |
Resumen : | Non-Cooperative Target Recognition (NCTR) of aircrafts from radar measurements is a formidable problem that has drawn the attention of engineers and scientists over the last years. NCTR techniques typically involve a database with a huge amount of information from different known targets and a reliable identification algorithm able to highlight the likeness between measured and stored data. This paper uses High Resolution Range Profiles produced with a high-frequency software tool to train Arti cial Neural Networks for distinguishing between different classes of aircrafts. Actual data from the ORFEO measurement campaign are used to assess the performance of the trained networks. |
URI : | http://hdl.handle.net/20.500.12666/780 |
ISSN : | 1937-8718 |
Aparece en las colecciones: | (Espacio) Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
19.11030206.pdf | 768,26 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons