Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/780
Título : Class Identification of Aircrafts by Means of Artificial Neural Networks Trained with Simulated Radar Signatures.
Autor : Jurado Lucena, A.
Montiel, I.
Escot Bocanegra, D.
Poyatos Martínez, D.
Fecha de publicación : 27-may-2011
Editorial : The EM Academy
DOI: 10.2528/PIERC11030206
Versión del Editor: https://www.jpier.org/pierc/pier.php?paper=11030206
Citación : Progress in Electromagnetics Research C 21: 243-255
Resumen : Non-Cooperative Target Recognition (NCTR) of aircrafts from radar measurements is a formidable problem that has drawn the attention of engineers and scientists over the last years. NCTR techniques typically involve a database with a huge amount of information from different known targets and a reliable identification algorithm able to highlight the likeness between measured and stored data. This paper uses High Resolution Range Profiles produced with a high-frequency software tool to train Arti cial Neural Networks for distinguishing between different classes of aircrafts. Actual data from the ORFEO measurement campaign are used to assess the performance of the trained networks.
URI : http://hdl.handle.net/20.500.12666/780
ISSN : 1937-8718
Aparece en las colecciones: (Espacio) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
19.11030206.pdf768,26 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons