Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/98
Título : Thermodynamic evolution theorem for chemical reactions
Autor : Hochberg, David
Ribó, Josep M.
Palabras clave : Emergence;Autocatalysis;Entropy Production;Mirror Symmetry Breaking
Fecha de publicación : 14-dic-2020
Editorial : APS Physics
DOI: 10.1103/PhysRevResearch.2.043367
Versión del Editor: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043367
Citación : Physical Review Research 2: 043367 (2020)
Resumen : The production, exchange, and balance of entropy characterize the thermodynamics of open nonequilibrium systems, ranging from chemical reactions, cells, ecological systems, and Earth-like planets to stars. We generalize the Glansdorff-Prigogine general evolution criterion to constrain the entropy balance in volumetric open-flow chemical reaction systems. We derive a thermodynamic inequality governing the joint evolution of both the internal microreversible reactions and the matter fluxes that the system exchanges with its environment, as exemplified by the distribution of the entropy productions and exchanges over the chemical reaction pathways. We validate this evolution theorem and discuss the physical significance of this pathwise partitioning of the dissipation, for an autocatalytic model capable of spontaneous mirror symmetry breaking.
URI : http://hdl.handle.net/20.500.12666/98
E-ISSN : 2643-1564
Aparece en las colecciones: (CAB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Thermodynamic evolution theorem for chemical reactions.pdf1,59 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons