Aeronáutica

URI permanente para esta comunidadhttps://digitalpro.inta.es/handle/20.500.12666/37

Muchas de las líneas de investigación del INTA se centran en el ámbito aeronáutico. Estas líneas van encaminadas a reforzar las competencias en nuevas tecnologías, haciendo especial hincapié a las relacionadas con caracterización de emisiones producidas por turborreactores, investigación en tecnologías del hidrógeno y otras energías renovables, motores cohete con propulsante líquido y sólido, estudio de materiales funcionales, diseño y fabricación de superficies hielofóbicas, recubrimientos protectores para la corrosión por biomasa, estructuras activas avanzadas y robótica, generación avanzada de trayectorias sobre UAVs, aprendizaje automático e inteligencia artificial sobre minería de datos aerodinámicos y actuadores de plasma y sus aplicaciones.

La investigación de la Aeronáutica se materializa en proyectos financiados con fondos propios, como por ejemplo GERD, que trata del estudio de las condiciones y las tipologías de formación de hielo en superficies. Actualmente se están finalizando las tareas de implementación del nuevo de viento de engelamiento, único en el país, duplicando la capacidad de realización de ensayos en condiciones de formación de hielo.

En el sector aeronáutico del INTA cabe destaca el CIAR, un centro de ensayos en vuelo innovador, que proporciona apoyo técnico y logístico en la experimentación de sistemas de vuelo no tripulados en el ámbito de operación civil o dual y el CEDEA, un centro de ensayos para caracterización de aeronaves y sus componentes tanto tripuladas como no tripuladas, experimentación de misiles, cohetes e I+D de proyectos aeronáuticos de energía y estudio de la atmósfera.

Otros campos de investigación relacionados con la Aeronáutica son la tecnología del vuelo, la aerodinámica teórica y experimental, materiales y estructuras, desarrollo de pinturas, estudio de nuevas fuentes de energía, con programas de I+D dentro del campo de la propulsión y de su aplicación aeroespacial, estudio del impacto medioambiental de los propulsantes y trabajos relacionados con los combustibles y lubricantes en el ámbito aeroespacial y de la Defensa Nacional.

Envíos recientes

PublicaciónRestringido
Oxidation under pure steam: Cr based protective oxides and coatings
(Elsevier, 2013-09-20) Agüero, Alina; González, Vanessa; Gutiérrez del Olmo, Marcos; Muelas Gamo, Raúl
At temperatures of 900 °C and higher, the formation, transformation and failure of protective oxides in air have been deeply studied. However, there is significantly less available information of these processes when they take place under pure steam and in the lower temperature range pertinent to steam power plants. New designs for these plants are expected to operate at 625–700 °C, at which the candidate ferritic/martensitic steels exhibit very low steam oxidation resistance. In this paper, available knowledge of the behavior of Cr based protective oxides formed under steam at 650 °C will be presented. It is already known that on ferritic/martensitic steels with a Cr content lower than ~ 9 wt.% such as P92, a nonprotective, thick, dual layer composed of Fe3O4 and (Fe, Cr)3O4 forms. However, significantly higher steam oxidation resistance has been recently found when exposing NPM, a 9 wt.% Cr martensitic steel rich in W and Co, to pure steam at 650 °C. In this case a protective, very thin multilayer forms, with alternating Fe3O4 and (Fe, Cr, Mn)3O4 layers. Different oxides formed after 10,000 h of exposure to steam at 650 °C, on Cr containing coatings. In the case of Fe based, Cr rich coatings, both diffusion and overlay, a protective spinel was observed. However, Cr containing coatings based on Ni develop a very stable, protective thin Cr2O3 layer. Results show that along with the Cr content, other factors such as the grain size below the scale appear to determine the formation of thin protective scales. The steam pressure was also found to significantly and negatively affect the stability of protective Cr based oxides. Chromia former steels and coatings may not be the best solution for 650 °C new generation steam power plants.

Buscar