Publicación:
HVOF coatings for steam oxidation protection

dc.contributor.authorAgüero, Alina
dc.contributor.authorMuelas Gamo, Raúl
dc.contributor.authorGonzález, Vanessa
dc.contributor.otherCentro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2025-12-01T09:30:22Z
dc.date.available2025-12-01T09:30:22Z
dc.date.issued2008-05-29
dc.description.abstractIn the context of the European project ‘Coatings for Supercritical Steam Cycles’ (SUPERCOAT), the use of steam oxidation resistant coatings on currently available ferritic materials with high creep strength but poor oxidation resistance was investigated in order to allow increase in the operating temperature of steam power plants from 550 to 650 °C. Among the explored coating techniques for this application, chosen on the basis of being potentially appropriate for coating steam turbine components, High Velocity Oxy Fuel (HVOF) thermal spray has resulted in one of the most successful techniques. Different alloyed materials such as FeCrAl, NiCrSiFeB, FeAl, NiCr and FeCr have been deposited, optimized and tested under flowing steam at 650 °C. Characterization of as deposited and tested samples by metallography, SEM-EDS and XRD was carried out. Some of these coatings form protective pure chromium or aluminium oxides exhibiting excellent behaviour for at least 15 000 h of exposure, whereas others form less stable complex mixed oxides which nevertheless grow at considerably slower rates than the oxides formed on uncoated P92 (9 wt% Cr ferritic steel).
dc.description.peerreviewedPeerreview
dc.identifier.citationMaterials and Corrosion 59(5): 393-401
dc.identifier.doi10.1002/maco.200804121
dc.identifier.e-issn1521-4176
dc.identifier.issn0947-5117
dc.identifier.otherhttps://onlinelibrary.wiley.com/doi/10.1002/maco.200804121
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1544
dc.language.isoeng
dc.publisherWiley online library
dc.relation.isreferencedby1 T. U. Kern, M. Staubli, K. H. Meyer, K. Esher, G. Zeiler, Mater. Adv. Power Eng. 2002, Vol. II, 1049. 2 M. Staubli, K. H. Meyer, W. Gieselbrecht, J. Stief, A. DiGianfrancesco, T. U. Kern, Mater. Adv. Power Eng. 2002, Vol. II, 1065. 3 T. U. Kern, M. Staubli, K. H. Meyer, B. Donth, G. Zeiler, X. DiGianfrancesco, Mater. Adv. Power Eng. 2006, Vol. II, 843. 4 M. Staubli, R. Hanus, T. Weber, K. H. Meyer, T. U. Kern, Mater. Adv. Power Eng. 2006, Vol. II, 855. 5 J. Hald, Mater. Adv. Power Eng. 2006, Vol. II, 917. 6 W. J. Quadakkers, P. J. Ennis, J. Zurek, M. Michalik, Mater. High Temp. 2005, 22, 47. 7 T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K. Zaini Thosin, S. Hayashi, Mater. Sci. Forum 2006, 522–523, 1. 8 A. Agüero, F. J. García de Blas, R. Muelas, A. Sánchez, S. Tsipas, Mater. Sci. Forum 2001, 369–379, 939. 9 A. Agüero, R. Muelas, M. Gutiérrez, Mater. Sci. Forum 2006, 522–523, 205. 10 M. B. Henderson, M. Scheefer, A. Agüero, B. Allcock, B. Norton, D. N. Tsipas, R. Durham, Mater. Adv. Power Eng. 2006, Vol. III, 1553. 11 T. Sundararajan, S. Kuroda, K. Nishida, T. Itagaki, .F. Abe, ISIJ Int. 2004, 44, 139. 12 A. Agüero, R. Muelas, B. Scarlin, R. Knoedler, Mater. Adv. Power Eng. 2002, Vol. II, 1143. 13 L. M. Atlas, W. K. Sumica, J. Amer. Ceram. Soc. 1958, 41, 50. 14 L. Mikkelsen, S. Linderoth, J. B. Bilde-Sørensen, Mater. Sci. Forum 2004, 117, 461– 462. 15 P. Tomaszewicz, G. R. Wallwork, Rev. High Temp. Mater. 1978, 4, 75. 16 R. Prescott, M. J. Graham, Oxidation Met. 1992, 38, 73. 17 K. Segerdahl, J. E. Svensson, M. Halvarsson, I. Panas, L. G. Johansson, Mater. High Temp. 2005, 21, 69. 18 H. Asterman, K. Segerdahl, J. E. Svensson, L. G. Johansson, M. Halvarsson, J.E. Tang, Mater. Sci. Forum 2004, 775, 461– 464. 19 W. J. Quadakkers, P. J. Ennis, Mater. Adv. Power Eng. 1998, Vol. I, 123. 20 T. Sundararajan, S. Kuroda, T. Itagaki, F. Abe, Thermal Spray 2003: Advancing.the Science and Applying the Technology, ASM International, Materials Park, Ohio, USA, 2003, 495. 21 T. Sundararajan, S. Kuroda, T. Itagaki, F. Abe, ISIJ Int. 2003, 43, 104. 22 G. Berthomé, E. N'Dah, Y. Wouters, A. Galerie, Mater. Corros. 2005, 56, 389. 23 W. E. Boggs, J. Electrochem. Soc. 1971, 118, 906. 24 R. W. Vanstone, Mater. Adv. Power Eng. 2002, Vol. II, 1035.
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseCopyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
dc.subjectSteam Oxidation protection
dc.titleHVOF coatings for steam oxidation protection
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isAuthorOfPublication54eb9dc6-fbe0-4f0c-8de4-52a5eb275238
relation.isAuthorOfPublication.latestForDiscovery54eb9dc6-fbe0-4f0c-8de4-52a5eb275238

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
01- Acceso Restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: