Publicación: Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92
| dc.contributor.author | Agüero, Alina | |
| dc.contributor.author | González, V | |
| dc.contributor.author | Gutiérrez del Olmo, Marcos | |
| dc.contributor.author | Knödler, R | |
| dc.contributor.author | Straub, S | |
| dc.contributor.author | Muelas Gamo, Raúl | |
| dc.contributor.other | Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737 | |
| dc.date.accessioned | 2025-12-02T08:48:41Z | |
| dc.date.available | 2025-12-02T08:48:41Z | |
| dc.date.issued | 2011-01-12 | |
| dc.description.abstract | Steam oxidation has become an important issue for steam power plants as operating temperatures increase from the current 550 to 600–650 °C. For the last 10 years several groups have been carrying out steam oxidation testing of both uncoated substrates and coatings in the laboratory. On the other hand, field testing results are very scarce. In this paper, a comparison of laboratory steam oxidation testing with field test results carried out by Alstom at the Kraftwerk Westfalen power station located in Hamm, Germany will be presented. Both slurry deposited aluminide coatings and uncoated P92 steel have been included in the study. Under steam (atmospheric pressure) and isothermal conditions in the laboratory at 650 °C, spallation of oxides formed on ferritic steels occurs after significantly longer time when compared to exposure to real operating conditions. Oxide spallation results in serious damage in steam power plants by obstructing heat exchanger tubes, erosion of valves and turbine blades, etc. Moreover, the thickness of the oxide scales formed under field testing conditions is significantly higher after similar exposure. On the other hand, aluminide coated P92, which exhibit thickness through cracks, have shown to be stable in the laboratory for up to 60 000 h at 650 °C under steam, without evidence of crack propagation. However, field test results indicate that some degree of crack propagation occurs but without causing substrate attack up to 21 700 h of exposure. Moreover, the aluminium oxide observed in both laboratory and field tested specimens is different. | |
| dc.description.peerreviewed | Peerreview | |
| dc.identifier.citation | Materials and Corrosion 62(6): 561-568 | |
| dc.identifier.doi | 10.1002/maco.201005874 | |
| dc.identifier.e-issn | 1521-4176 | |
| dc.identifier.issn | 0947-5117 | |
| dc.identifier.other | https://onlinelibrary.wiley.com/doi/10.1002/maco.201005874 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12666/1554 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley online library | |
| dc.relation.isreferencedby | 1 T. U. Kern, M. Staubli, K. H. Meyer, B. Donth, G. Zeiler, A. DiGianfrancesco, Mater. Adv. Power Eng. 2006, II, 846. 2 R. Knödle, B. Scarlin, Mater. Adv. Power Eng. 2002, III, 1601. 3 W. J. Quadakkers, P. J. Ennis, J. Zurek, M. Michalik, Mater. High Temp. 2005, 22, 43. 4 M. Schütze, D. Renusch, M. Schorr, Mater. High Temp. 2005, 22, 113. 5 A. T. Fry, Energy Mater.: Mater. Sci. Eng. Energy Syst. 2007, 2, 214. 6 V. Lepingle, G. Louis, D. Allué, B. Lefebvre, B. Vandenberghe, Corros. Sci. 2008, 50, 1011. 7 A. Agüero, Muelas. Raul, Mater. Sci. Forum 2004, 461–464, 957. 8 S. R. J. Saunders, L. N. McCartney, Mater. Sci. Forum 2006, 522–523, 119. 9 H. Meyer, D. Erdmann, P. Moser, S. Polenz, VGB PowerTech 2008, 3, 36. 10 R. Knödler, S. Straub, B. Scarlin, VGB PowerTech 2008, 3, 59. 11 R. Knödler, S. Straub, B. Scarlin, VGB PowerTech 2008, 9, 112. 12 A. Agüero, Energy Mater.: Mater. Sci. Eng. Energy Syst. 2008, 3, 35. 13 A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby, J. Banks, Surf. Coat. Technol. 2007, 201, 6253. 14 J. Ehlers, W. J. Quadakkers, Report Forschungszentrum Jülich, Jülich, Germany, 2001. 15 A. Agüero, R. Muelas, B. Scarlin, R. Knödler, Mater. Adv. Power Eng. 2002, III, 1143. 16 J. Ehlers, D. J. Young, E. J. Smaerdijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, W. J. Quadakkers, Corros. Sci. 2006, 48, 3428. 17 A. Agüero, K. Spiradek, M. Gutiérrez, R. Muelas, S. Höfinger, Mater. Sci. Forum 2008, 595–598, 251. 18 A. Agüero, M. Gutiérrez, V. González, Defect Diffus. J. 2009, 289–292, 243. 19 A. Agüero, M. Gutierrez, R. Muelas, Unpublished results carried out during the EC project SUPERCOAT, 2006. 20 M. G. Angell, S. K. Lister, A. Rudge, Available at: http://www.icpws15.de/papers/06_Electro-10_angell.pdf 21 A. Sánchez Biezma, ENDESA, Madrid Spain, private communication. 22 R. Knödler, S. Straub, VGB PowerTech 2008, 10, 66. 23 D. Laverde, T. Gómez-Aceb, F. Castro, Corros. Sci. 2004, 46, 613. 24 J. C. Griess, J. C. de Van, W. A. Maxwell, Mater. Perform. 1980, 19, 46. 25 M. Montgomery, A. Karlsson, VGB Kraftwerkstechn. 1995, 75, 235. | |
| dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | |
| dc.rights.license | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | |
| dc.subject | Steam oxidation | |
| dc.subject | Aluminide coatings | |
| dc.subject | Atmospheric pressure | |
| dc.title | Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92 | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | e9bb07d6-3bc5-49b1-8063-44e63da908c2 | |
| relation.isAuthorOfPublication | 248a98b0-f596-43a5-a1af-e90b84039769 | |
| relation.isAuthorOfPublication | 54eb9dc6-fbe0-4f0c-8de4-52a5eb275238 | |
| relation.isAuthorOfPublication.latestForDiscovery | e9bb07d6-3bc5-49b1-8063-44e63da908c2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 01- Acceso Restringido.pdf
- Tamaño:
- 221.73 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 4.77 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:










