Publicación:
Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92

dc.contributor.authorAgüero, Alina
dc.contributor.authorGonzález, V
dc.contributor.authorGutiérrez del Olmo, Marcos
dc.contributor.authorKnödler, R
dc.contributor.authorStraub, S
dc.contributor.authorMuelas Gamo, Raúl
dc.contributor.otherCentro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
dc.date.accessioned2025-12-02T08:48:41Z
dc.date.available2025-12-02T08:48:41Z
dc.date.issued2011-01-12
dc.description.abstractSteam oxidation has become an important issue for steam power plants as operating temperatures increase from the current 550 to 600–650 °C. For the last 10 years several groups have been carrying out steam oxidation testing of both uncoated substrates and coatings in the laboratory. On the other hand, field testing results are very scarce. In this paper, a comparison of laboratory steam oxidation testing with field test results carried out by Alstom at the Kraftwerk Westfalen power station located in Hamm, Germany will be presented. Both slurry deposited aluminide coatings and uncoated P92 steel have been included in the study. Under steam (atmospheric pressure) and isothermal conditions in the laboratory at 650 °C, spallation of oxides formed on ferritic steels occurs after significantly longer time when compared to exposure to real operating conditions. Oxide spallation results in serious damage in steam power plants by obstructing heat exchanger tubes, erosion of valves and turbine blades, etc. Moreover, the thickness of the oxide scales formed under field testing conditions is significantly higher after similar exposure. On the other hand, aluminide coated P92, which exhibit thickness through cracks, have shown to be stable in the laboratory for up to 60 000 h at 650 °C under steam, without evidence of crack propagation. However, field test results indicate that some degree of crack propagation occurs but without causing substrate attack up to 21 700 h of exposure. Moreover, the aluminium oxide observed in both laboratory and field tested specimens is different.
dc.description.peerreviewedPeerreview
dc.identifier.citationMaterials and Corrosion 62(6): 561-568
dc.identifier.doi10.1002/maco.201005874
dc.identifier.e-issn1521-4176
dc.identifier.issn0947-5117
dc.identifier.otherhttps://onlinelibrary.wiley.com/doi/10.1002/maco.201005874
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1554
dc.language.isoeng
dc.publisherWiley online library
dc.relation.isreferencedby1 T. U. Kern, M. Staubli, K. H. Meyer, B. Donth, G. Zeiler, A. DiGianfrancesco, Mater. Adv. Power Eng. 2006, II, 846. 2 R. Knödle, B. Scarlin, Mater. Adv. Power Eng. 2002, III, 1601. 3 W. J. Quadakkers, P. J. Ennis, J. Zurek, M. Michalik, Mater. High Temp. 2005, 22, 43. 4 M. Schütze, D. Renusch, M. Schorr, Mater. High Temp. 2005, 22, 113. 5 A. T. Fry, Energy Mater.: Mater. Sci. Eng. Energy Syst. 2007, 2, 214. 6 V. Lepingle, G. Louis, D. Allué, B. Lefebvre, B. Vandenberghe, Corros. Sci. 2008, 50, 1011. 7 A. Agüero, Muelas. Raul, Mater. Sci. Forum 2004, 461–464, 957. 8 S. R. J. Saunders, L. N. McCartney, Mater. Sci. Forum 2006, 522–523, 119. 9 H. Meyer, D. Erdmann, P. Moser, S. Polenz, VGB PowerTech 2008, 3, 36. 10 R. Knödler, S. Straub, B. Scarlin, VGB PowerTech 2008, 3, 59. 11 R. Knödler, S. Straub, B. Scarlin, VGB PowerTech 2008, 9, 112. 12 A. Agüero, Energy Mater.: Mater. Sci. Eng. Energy Syst. 2008, 3, 35. 13 A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby, J. Banks, Surf. Coat. Technol. 2007, 201, 6253. 14 J. Ehlers, W. J. Quadakkers, Report Forschungszentrum Jülich, Jülich, Germany, 2001. 15 A. Agüero, R. Muelas, B. Scarlin, R. Knödler, Mater. Adv. Power Eng. 2002, III, 1143. 16 J. Ehlers, D. J. Young, E. J. Smaerdijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, W. J. Quadakkers, Corros. Sci. 2006, 48, 3428. 17 A. Agüero, K. Spiradek, M. Gutiérrez, R. Muelas, S. Höfinger, Mater. Sci. Forum 2008, 595–598, 251. 18 A. Agüero, M. Gutiérrez, V. González, Defect Diffus. J. 2009, 289–292, 243. 19 A. Agüero, M. Gutierrez, R. Muelas, Unpublished results carried out during the EC project SUPERCOAT, 2006. 20 M. G. Angell, S. K. Lister, A. Rudge, Available at: http://www.icpws15.de/papers/06_Electro-10_angell.pdf 21 A. Sánchez Biezma, ENDESA, Madrid Spain, private communication. 22 R. Knödler, S. Straub, VGB PowerTech 2008, 10, 66. 23 D. Laverde, T. Gómez-Aceb, F. Castro, Corros. Sci. 2004, 46, 613. 24 J. C. Griess, J. C. de Van, W. A. Maxwell, Mater. Perform. 1980, 19, 46. 25 M. Montgomery, A. Karlsson, VGB Kraftwerkstechn. 1995, 75, 235.
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseCopyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
dc.subjectSteam oxidation
dc.subjectAluminide coatings
dc.subjectAtmospheric pressure
dc.titleComparison between field and laboratory steam oxidation testing on aluminide coatings on P92
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isAuthorOfPublication248a98b0-f596-43a5-a1af-e90b84039769
relation.isAuthorOfPublication54eb9dc6-fbe0-4f0c-8de4-52a5eb275238
relation.isAuthorOfPublication.latestForDiscoverye9bb07d6-3bc5-49b1-8063-44e63da908c2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
01- Acceso Restringido.pdf
Tamaño:
221.73 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: