Publicación:
Modified high hardness steel coating for biomass corrosion protection

dc.contributor.authorAgüero, Alina
dc.contributor.authorGutiérrez del Olmo, Marcos
dc.contributor.authorAudigié, Pauline
dc.contributor.authorSergio, Rodríguez Catela
dc.contributor.authorPascual Ferreiro, Jon
dc.date.accessioned2026-01-21T11:12:10Z
dc.date.available2026-01-21T11:12:10Z
dc.date.issued2025-09-13
dc.descriptionThe test data that support the findings of this study are available from the corresponding authors upon reasonable request.
dc.description.abstractBiomass is a renewable and CO2-neutral energy source. However, the efficiency of biomass combustion plants remains lower than that of current fossil fuel-based systems. To minimize corrosion from aggressive species found in biomass combustion, these plants currently operate at a maximum temperature of 550 °C. The European project BELENUS explored new materials and coatings to raise the operating temperature to 600 °C, thereby improving plant efficiency. Among the coatings under investigation, a super high-hardness steel (SHS) modified with Al, applied by high velocity oxy-fuel (HVOF) thermal spray on ferritic steel SVM12, has demonstrated an improved performance in the laboratory, exposed to a model biomass environment containing KCl deposits for 8000 h at 600 °C. Microstructural analysis by field emission scanning electron microscopy (FESEM) and X-ray diffraction was conducted on the tested samples to examine the coating’s evolution in these environments, as well as the associated protection and degradation mechanisms. The presence of Al within the coating significantly enhanced its resistance to biomass corrosion when compared to uncoated SVM12 and the Al-free SHS coating. Possible reasons for the improved behaviour of the Al-modified coating are the reduction of porosity as well as the blocking effect of either intermetallic FeAl or Al oxide which forms at the splat boundaries prior to exposure to the corrosive atmosphere.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipThe authors thank all the members of the Metallic Materials Area at INTA for technical support.
dc.identifier.citationMaterials for Renewable and Sustainable Energy 14: 54
dc.identifier.doi10.1007/s40243-025-00330-w
dc.identifier.e-issn2194-1467
dc.identifier.issn2194-1459
dc.identifier.otherhttps://link.springer.com/article/10.1007/s40243-025-00330-w
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1640
dc.language.isoeng
dc.publisherSpringer Nature Link
dc.relationBELENUS 815147
dc.relation.isreferencedby1. Majamo, S.L., Amibo, T.A., Bedru, T.K.: Synthesis and application of biomass-derived magnetic biochar catalyst for simultaneous esterification and trans-esterification of waste cooking oil into biodiesel: modeling and optimization. Mater. Renew. Sustain. Energy 12, 147–158 (2023). https://doi.org/10.1007/s40243-023-00236-5 2. Sugebo, B.: A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Mater. Renew. Sustain. Energy 11, 91–103 (2022). https://doi.org/10.10 07/s40243-022-00209-0 3. Gill, T., Birch, T.: A guide to biomass power plants, The Ecoexperts, A guide to biomass power plants | The Eco Experts. Accessed 31 July 2025 4. Bulkowska, K., Mriusz Gusiatin, Z., Klimiuk, E., Pawlowski, A., Pokoj, T.: Biomass for Biofuels. CRC Press/Balkema, Taylor & Francis Group, London, UK. (ISBN: 978–1–138–02631–5) 5. Wu, D.L., Dahl, K.V., Christiansen, T.L., Montgomery, M., Hald, J.: Corrosion behaviour of Ni and nickel aluminide coatings exposed in a biomass fired power plant for two years. Surf. Coat. Technol. 362, 355–365 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.129 6. Karlsson, S., Pettersson, J., Johansson, L.-G., Svensson, J.E.: Alkali induced high temperature corrosion of stainless steel: the influence of NaCl, KCl and CaCl2. Oxid. Met. 78, 83–102 (2012). https://doi.org/10.1007/s11085-012-9293-7 7. Shower, P.: Corrosion and Erosion Coatings for Biomass (Combustion) with load following. Proceedings of 2023 FECM/NETL Spring, Pittsburg, PA, R&D Project Meeting, April (2023). https://netl.doe.gov/sites/default/​f​​i​les/netl-​f​i​​le/23FECM_19_Shower.pdf. Accessed 07 May 2025 8. Kawahara, Y.: An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades. Coatings 6, 34 (2016). https://doi.org/10.3390/coatings6030034 9. Kish, J.R., Reid, C., Singbeil, D.L., Seguin, R.: Corrosion of highalloy superheater tubes in a coastal biomass power boiler. Corrosion 64(4), 356–366 (2008). https://doi.org/10.5006/1.3278479 10. Agüero, A., Muelas, R., González, V.: HVOF coatings for steam oxidation protection. Mater. Corros. 59, 393–401 (2008). https:// doi.org/10.1002/maco.200804121 11. Agüero, A., Gutiérrez, M., Muelas, R., Plana, D., Román, A., Hernández, M.: Laboratory corrosion testing of coatings and substrates simulating coal combustion under a low NOx burners atmosphere. Mater. Corros. 65, 149–160 (2014). https://doi.org/1 0.1002/maco.201307096 12. Sadeghi, E., Markocsan, N., Joshi, S.: Advances in corrosion resistant thermal spray coatings for renewable energy power plants. Part I: effect of composition and microstructure. J. Therm. Spray Technol. 28, 1749–1788 (2019). https://doi.org/10.1007/s1 1666-019-00938-1 13. Agüero, A., Baráibar, I., Gutiérrez, M., Hernández, M., Muelas, R., Rodríguez, S.: Biomass corrosion behavior of steels and coatings in contact with KCl/K2SO4 at 550°C under an oxy-fuel combustion atmosphere: a screening laboratory test. Surf. Coat. Technol. 350, 188–200 (2018). https://doi.org/10.1016/j.surfcoat. 2018.05.082 14. Pidcock, A., Mori, S., Sumner, J., Simms, N., Nicholls, J., Oakey, J.: High temperature corrosion of HVOF coatings in laboratory simulated biomass combustion superheater environments. Oxid. Met. 99, 101–115 (2023). https://doi.org/10.1007/s11085-022-10 141-3 15. Bai, M., Reddy, L., Hussain, T.: Experimental and thermodynamic investigations on the chlorine-induced corrosion of HVOF thermal sprayed NiAl coatings and 304 stainless steels at 700 °C. Corros. Sci. 135, 147–157 (2018). https://doi.org/10.1016/j.corsci.2018.02.047 16. Abu-warda, N., Tomás, L.M., López, A.J., Utrilla, M.V.: High temperature corrosion behavior of Ni and Co base HVOF coatings exposed to NaCl-KCl salt mixture. Surf. Coat. Technol. 418, 127277 (2021). https://doi.org/10.1016/j.surfcoat.2021.127277 17. Eklund, J., Phother, J., Sadeghi, E., Joshi, S., Liske, L.: Hightemperature corrosion of HVAF-sprayed Ni-based coatings for boiler applications. Oxid. Met. 91, 729–747 (2019). https://doi.or g/10.1007/s11085-019-09906-0 18. European Commission project “Lowering Costs by Improving Efficiencies in Biomass Fueled Boilers: New Materials and Coatings to Reduce Corrosion- BELENUS”, 2019–2024, https://belenus-project.eu/. Accessed 07 May 2025 19. Agüero, A., Audigié, P., Rodríguez, S., Gutiérrez, M., Pascual, J., Ssenteza, V., Jonsson, T., Johansson, L.-G.: Rapid α-Al2O3 growth on an iron aluminide coating at 600 °C in the presence of O2, H2O, and KCl. ACS Appl. Mater. Interfaces 16, 59507–59515 (2024). https://doi.org/10.1021/acsami.4c11719 20. WEARTECH SHS800HV HVOF Hardfacing - Severe Abrasion Thermal Spray Powder https://chdelivery.lincolnelectric.com/api/pu​​bli​​c/c​​ont​​ent​​/c58​​0​f​​f​61​​450f​​49f​​c9c​​7059f97ade3942?v=365ee1ae. Accessed 07 May 2025 21. Quadakkers W. J., Ennis, P. J.: Materials for Advanced Power Engineering 1998. In: J. Lecomte-Beckers et al. (Eds) pp. 123–138. Forschungszentrum Julich Gmbh, Germany (1998) 22. Kiamehr, S., Dahl, K.V., Montgomery, M., Somers, M.A.J.: KClinduced high temperature corrosion of selected commercial alloysPart I: chromia-formers. Mater. Corros. 66, 1414–1429 (2015). https://doi.org/10.1002/maco.201408213 23. Olivas-Ogaz, M.A., Eklund, J., Persdotter, A., et al.: The influence of oxide-scale microstructure on KCl(s)-induced corrosion of low-alloyed steel at 400 °C. Oxid. Met. 91, 291–310 (2019). https://doi.org/10.1007/s11085-018-9881-2 24. Dudziak, T., Hussain, T., Orlicka, D., Pokrywa, A., Simms, N.J.: Fireside corrosion degradation of 15Mo3, T22, T23 & T91 in simulated coal-biomass co-fired environment. Mater. Corros. 66, 839–850 (2015). https://doi.org/10.1002/maco.201407886 25. Meissner, T.M., Montero, X., Fäshing, D., Galetz, M.C.: Cr diffusion coatings on a ferritic-martensitic steel for corrosion protection in KCl-rich biomass co-firing environments. Corros. Sci. 164, 108343 (2020). https://doi.org/10.1016/j.corsci.2019.108343 26. Sadeghimeresht, E., Reddy, L., Hussain, T., Huhtakangas, M., Markocsan, N., Joshi, S.: Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings. Mater. Des. 148, 17–29 (2018). https://doi.org/10.1016/j.matdes.2018.03.048 27. Sadeghimeresht, I., Reddy, L., Hussain, T., Markocsan, N., Joshi, S.: Chlorine-induced high temperature corrosion of HVAFsprayed Ni-based alumina and chromia forming coatings. Corros. Sci. 132, 170–184 (2018). https://doi.org/10.1016/j.corsci.2017.1 2.033 28. Jafari, R., Sadeghimeresht, E., Farahani, T.S., Huhtakangas, M., Markocsan, N., Joshi, S.: KCl-induced high-temperature corrosion behaviour of HVAF-sprayed Ni-based coatings in ambient air. J. Therm. Spray Technol. 27, 500–511 (2018). https://doi.org/ 10.1007/s11666-017-0684-9 29. Fantozzi, D., Kiilakoski, J., Koivuluoto, H., Vuoristo, P., Uusitalo, M., Bolelli, G., Testa, V., Lusvarghi, L.: High Temperature Corrosion Properties of Thermally Sprayed Ceramic Oxide Coatings. In: Proceedings of International Thermal Spray Conference (2018), Orlando, USA, 501–507 (2018). https://doi.org/10.31399/asm.cp.itsc2018p0501 30. Luo, X., Ning, Z., Zhang, L., Lin, R., He, H., Yang, J., Yang, Y., Liao, J., Liu, N.: Influence of Al2O3 overlay on corrosion resistance of plasma sprayed yttria-stabilized zirconia coating in NaCl-KCl molten salt. Surf. Coat. Technol. 361, 432–437 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.054 31. Ishitsuka, T., Nose, K.: Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides. Corros. Sci. 44(2), 247–263 (2002). https://doi.org/10.1016/S0010-938X(01)00059-2 32. Lehmusto, J., Skrifvars, B.-J., Yrjas, P., Hupa, M.: Comparison of potassium chloride and potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel. Fuel Process. Technol. 105, 98–105 (2013). https://doi.org/ 10.1016/j.fuproc.2011.12.016
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseCopyright © 2025, The Author(s)
dc.subjectBiomass corrosion
dc.subjectHVOF thermal spray
dc.subjectCoatings
dc.subjectSteel
dc.subjectAlumina
dc.titleModified high hardness steel coating for biomass corrosion protection
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumber815147
oaire.awardTitleBELENUS 815147
oaire.awardURIhttps://digitalpro.inta.es/handle/123456789/1375
relation.isAuthorOfPublicatione9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isAuthorOfPublication248a98b0-f596-43a5-a1af-e90b84039769
relation.isAuthorOfPublication686217e1-1771-46e8-a536-1fd94a7bdec8
relation.isAuthorOfPublicationa6be277e-0b0c-4412-802d-b754ed778a1a
relation.isAuthorOfPublicationa43a7c57-08f7-45ef-a4f5-eace59344674
relation.isAuthorOfPublication.latestForDiscoverye9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isProjectOfPublication96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5
relation.isProjectOfPublication.latestForDiscovery96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Modified high hardness steel coating for biomass corrosion protection.pdf
Tamaño:
6.89 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: