Publicación:
Rapid α-Al2O3 Growth on an Iron Aluminide Coating at 600 °C in the Presence of O2, H2O, and KCl

dc.contributor.authorAgüero, Alina
dc.contributor.authorAudigié, Pauline
dc.contributor.authorSergio, Rodríguez Catela
dc.contributor.authorGutiérrez del Olmo, Marcos
dc.contributor.authorPascual Ferreiro, Jon
dc.contributor.authorSsenteza, Vicent
dc.contributor.authorJonsson, Torbjörn
dc.contributor.authorJohansson, Lars Gunnar
dc.contributor.funderAgencia Estatal de Investigación (España)
dc.contributor.funderEuropean Commission
dc.date.accessioned2026-01-21T12:30:10Z
dc.date.available2026-01-21T12:30:10Z
dc.date.issued2024-10-17
dc.descriptionCorresponding Author Alina Agüero - Área de Materiales Metálicos, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; Orcidhttps://orcid.org/0000-0002-3373-4532; Email: agueroba@inta.es Authors Pauline Audigié - Área de Materiales Metálicos, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; Orcidhttps://orcid.org/0000-0001-7578-4100 Sergio Rodríguez - Área de Materiales Metálicos, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; Orcidhttps://orcid.org/0000-0001-6941-9262 Marcos Gutiérrez del Olmo - Área de Materiales Metálicos, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; Orcidhttps://orcid.org/0000-0002-4143-1259 Jon Pascual - Área de Materiales Metálicos, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; Orcidhttps://orcid.org/0009-0009-7055-9022 Vicent Ssenteza - Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Energy and Materials, Kemivägen 10, 412 96 Gothenburg, Sweden; Orcidhttps://orcid.org/0000-0003-0683-2847 Torbjörn Jonsson - Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Energy and Materials, Kemivägen 10, 412 96 Gothenburg, Sweden; Orcidhttps://orcid.org/0000-0003-0376-4092 Lars-Gunnar Johansson - Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Energy and Materials, Kemivägen 10, 412 96 Gothenburg, Sweden
dc.description.abstractIn this work, a slurry iron aluminide-coated ferritic steel SVM12 was subjected to a laboratory experiment mimicking superheater corrosion in a biomass-fired power boiler. The samples were exposed under model Cl-rich biomass conditions, in a KCl + O2 + H2O environment at 600 °C for 168, 2000, and 8000 h. The morphology of corrosion and the composition of the oxide scale and the coating were investigated by a combination of advanced analytical techniques such as FESEM/EDS, SEM/EBSD, and XRD. Even after short-term exposure, the coating developed a very fast-growing and up to 50 μm thick α-Al2O3 scale in contrast to the spontaneous formation of a protective, thin, dense, slow-growing, and very adhesive α-Al2O3 layer usually formed on metallic materials after high-temperature oxidation. In view of the literature on the formation of oxide scales on alloys and coatings, the formation of an α-Al2O3 scale at this relatively low temperature is very surprising in itself. The thick alumina scale was not protective as its formation resulted in fast degradation of the coating and rapid Fe2Al5 → FeAl phase transformation, which in turn generated porosity inside the coating. In all cases, the resulting thick Al2O3 scale was porous and consisted of both equiaxed α-Al2O3 grains and randomly oriented aggregated alumina whiskers. Potassium is concentrated in the outer part of the Al2O3 scale, while chlorine is concentrated close to the scale/aluminide interface. The unexpected formation of rapidly growing α-Al2O3 at relatively low temperature is attributed to the hydrolysis of aluminum chloride generated in the corrosion process.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 815147 (BELENUS project). INTA has also received funding from the Spanish Ministry of Science and Innovation for COCO, project–ref: PID2020-115866RB-C21/AEI/10.13039/501100011033.
dc.identifier.citationACS Applied Materials & Interfaces 16(43): 59507-59515
dc.identifier.doi10.1021/acsami.4c11719
dc.identifier.e-issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.otherhttps://pubs.acs.org/doi/10.1021/acsami.4c11719
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1647
dc.language.isoeng
dc.publisherACS Publications
dc.relationBELENUS 815147
dc.relationDESARROLLO Y OPTIMIZACION DE RECUBRIMIENTOS RESISTENTES A LA CORROSION A ALTA TEMPERATURA EN PLANTAS TERMO-SOLARES CON SALES FUNDIDAS Y CO2 SUPERCRITICO
dc.relation.isreferencedby(1) Brumm, M. W.; Grabke, H. J. The Oxidation Behavior of NiAl. 1. Phase-Transformations in the Alumina Scale during Oxidation of NiAl and NiAl-Cr Alloys. Corros. Sci. 1992, 33 (11), 1677−1690. (2) Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81 (8), 1995−2012. (3) Young, D. J. High Temperature Oxidation and Corrosion of Metals; Elsevier: 2016. (4) Mortazavi, A. N.; Esmaily, M.; Geers, C.; Birbilis, N.; Svensson, J.-E.; Halvarsson, M.; Chandrasekaran, D.; Johansson, L. G. Exploring Failure Modes of Alumina Scales on FeCrAl and FeNiCrAl Alloys in a Nitriding Environment. Acta Mater. 2020, 201, 131−146. (5) Quadakkers, W. J.; Naumenko, D.; Wessel, E.; Kochubey, V.; Singheiser, L. Growth Rates of Alumina Scales on Fe-Cr-Al Alloys. Oxidation of Metals 2004, 61 (1−2), 17−37. (6) Prasanna, K. M. N.; Khanna, A. S.; Chandra, R.; Quadakkers, W. J. Effect of Theta-Alumina Formation on the Growth Kinetics of Alumina-Forming Superalloys. Oxidation of Metals 1996, 46 (5−6), 465−480. (7) Chevalier, S.; Galerie, A.; Heintz, O.; Chassagnon, R.; Crisci, A. Thermal Alumina Scales on FeCrAl: Characterization and Growth Mechanism. Mater. Sci. Forum 2008, 595−598, 915−922. (8) Josefsson, H.; Liu, F.; Svensson, J. E.; Halvarsson, M.; Johansson, L. G. Oxidation of FeCrAl Alloys at 500−900 °C in Dry O2. Materials and Corrosion-Werkstoffe Und Korrosion 2005, 56 (11), 801−805. (9) Haynes, J. A.; Pint, B. A.; Zhang, Y.; Wright, I. G. Comparison of the Cyclic Oxidation Behavior of β-NiAl, β-NiPtAl and γ−γ′ NiPtAl Coatings on Various Superalloys. Surf. Coat. Technol. 2007, 202 (4), 730−734. (10) Audigié, P.; Rouaix-Vande Put, A.; Malié, A.; Monceau, D. High-Temperature Cyclic Oxidation Behaviour of Pt-Rich γ-γ’ Coatings. Part I: Oxidation Kinetics of Coated AM1 Systems after Very Long-Term Exposure at 1100 °C. Corros. Sci. 2018, 144, 127− 135. (11) Daroonparvar, M.; Yajid, M. A. M.; Yusof, N. M.; Hussain, M. S.; Bakhsheshi-Rad, H. R. Formation of a Dense and Continuous Al2O3 Layer in Nano Thermal Barrier Coating Systems for the Suppression of Spinel Growth on the Al2O3 Oxide Scale during Oxidation. J. Alloys Compd. 2013, 571, 205−220. (12) Daroonparvar, M.; Yajid, M. A. M.; Kay, C. M.; BakhsheshiRad, H.; Gupta, R. K.; Yusof, N. M.; Ghandvar, H.; Arshad, A.; Zulkifli, I. S. M. Effects of Al2O3 diffusion Barrier Layer (Including YContaining Small Oxide Precipitates) and Nanostructured YSZ Top Coat on the Oxidation Behavior of HVOF NiCoCrAlTaY/APS YSZ Coatings at 1100 °C. Corros. Sci. 2018, 144, 13−34. (13) Singh, S.; Goyal, K.; Goyal, R. Performance of Ni3Al and TiO2 Coatings on T22 Boiler Tube Steel in Simulated Boiler Environment in Laboratory. Journal of Mechanical Engineering 2017, 46(1), 54−61. (14) Agüero, A.; Spiradek, K.; Höfinger, S.; Gutiérrez, M.; Muelas, R. Microstructural Evolution of Slurry Fe Aluminide Coatings during High Temperature Steam Oxidation. Mater. Sci. Forum 2008, 595−598, 251−259. (15) Israelsson, N.; Unocic, K. A.; Hellstrom, K.; Jonsson, T.; Norell, M.; Svensson, J. E.; Johansson, L. G. A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600 °C. Oxidation of Metals 2015, 84 (1−2), 105−127. (16) Ejenstam, J.; Jonsson, B.; Szakalos, P. Optimizing the Oxidation Properties of FeCrAl Alloys at Low Temperatures. Oxidation of Metals 2017, 88 (3−4), 361−370. (17) Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.; Massey, C. P.; Pint, B. A. Development of Low-Cr ODS FeCrAl Alloys for AccidentTolerant Fuel Cladding. J. Nucl. Mater. 2018, 501, 59−71. (18) Aphale, A. N.; Hu, B.; Reisert, M.; Pandey, A.; Singh, P. Oxidation Behavior and Chromium Evaporation from Fe and Ni Base Alloys under SOFC Systems Operation Conditions. Jom 2019, 71 (1), 116−123. (19) Sand, T.; Edgren, A.; Geers, C.; Asokan, V.; Eklund, J.; Helander, T.; Svensson, J. E.; Johansson, L. G. Exploring the Effect of Silicon on the High Temperature Corrosion of Lean FeCrAl Alloys in Humid Air. Oxidation of Metals 2021, 95 (3−4), 221−238. (20) Agüero, A.; Gutierrez, M.; Muelas, R.; Plana, D.; Roman, A.; Hernandez, M. Laboratory Corrosion Testing of Coatings and Substrates Simulating Coal Combustion under a Low NOx Burner Atmosphere. Materials and Corrosion-Werkstoffe Und Korrosion 2014, 65 (2), 149−160. (21) Aguero, A., Garcia, M. C., Muelas, R., Sanchez, A., Perez, F. J., Duday, D., Hierro, M. P., Gomez, C. Al Slurry Coatings for Molten Carbonate Fuel Cells Separator Plates. In High Temperature Corrosion and Protection of Materials, 5, Pts 1 and 2nd ed.; Streiff, R., Wright, I. G., Krutenat, R. C., Caillet, M., Galerie, A., Eds.; Springer: 2001; pp 759−766. (22) Agüero, A.; Audigié, P.; Rodríguez, S. 10,000 h Molten Salt Corrosion Testing on IN617, Uncoated and Aluminide Ferritic Steels at 580 °C. AIP Conference Proceedings, 2303(1); AIP Publishing: 2020. (23) Meißner, T. M.; Oskay, C.; Bonk, A.; Grégoire, B.; Donchev, A.; Solimani, A.; Galetz, M. C. Improving the Corrosion Resistance of Ferritic-Martensitic Steels at 600 °C in Molten Solar Salt Via Diffusion Coatings. Sol. Energy Mater. Sol. Cells 2021, 227, No. 111105. (24) Boulesteix, C.; Pedraza, F.; Proy, M.; Lasanta, I.; de Miguel, T.; Illana, A.; Perez, F. J. Steam Oxidation Resistance of Slurry Aluminum and Aluminum/Silicon Coatings on Steel for Ultrasupercritical Steam Turbines. Oxidation of Metals 2017, 87 (3), 469−479. (25) Pedraza, F.; Boulesteix, C.; Proy, M.; Lasanta, I.; de Miguel, T.; Illana, A.; Perez, F. J. Behavior of Slurry Aluminized Austenitic Stainless Steels under Steam at 650 and 700 °C. Oxidation of Metals 2017, 87 (3−4), 443−454. (26) Agüero, A.; Baraibar, I.; Gutierrez, M.; Tuurna, S.; Toivonen, A.; Penttilä, S.; Auerkari, P. Steam Oxidation of Aluminide-Coated and Uncoated TP347HFG Stainless Steel under Atmospheric and Ultra-Supercritical Steam Conditions at 700 °C. Coatings 2020, 10 (9), 839. (27) Madloch, S.; Galetz, M. C. Microstructural Evolution of Germanium Modified AlSi-Slurry Coatings on Alloy 600 at 620°C in Metal Dusting Environment. Surf. Coat. Technol. 2017, 315, 335−341. (28) Agüero, A.; Baraibar, I.; Muelas, R.; Oskay, C.; Galetz, M.; Korner, E. Analysis of an Aluminide Coating on Austenitic Steel 800HT Exposed to Metal Dusting Conditions: Lessons from an Industrial Hydrogen Production Plant. International Journal of Pressure Vessels and Piping 2020, 186, No. 104129. (29) Spitsberg, I.; More, K. Effect of Thermally Grown Oxide (TGO) Microstructure on the Durability of TBCs with PtNiAl Diffusion Bond Coats. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2006, 417 (1−2), 322−333. (30) Tolpygo, V.; Clarke, D. R. The Effect of Oxidation PreTreatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings with Platinum-Aluminide Bond Coats. Surface & Coatings Technology 2005, 200 (5−6), 1276−1281. (31) Ssenteza, V.; Eklund, J.; Hanif, I.; Liske, J.; Jonsson, T. High Temperature Corrosion Resistance of FeCr(Ni, Al) Alloys as Bulk/ Overlay Weld Coatings in the Presence of KCl at 600 °C. Corros. Sci. 2023, 213, No. 110896. (32) Agüero, A.; Baraibar, I.; Gutierrez, M.; Hernandez, M.; Muelas, R.; Rodriguez, S. Biomass Corrosion Behavior of Steels and Coatings in Contact with KCl/K2SO4 at 550 °C under an Oxy-Fuel Combustion Atmosphere: A Screening Laboratory Test. Surface & Coatings Technology 2018, 350, 188−200. (33) Murray, J. Fe−Al Binary Phase Diagram. Alloy Phase Diagrams; ASM International: Materials Park, OH, 1992; Vol. 54. (34) Agüero, A.; Gutierrez, M.; Muelas, R.; Spiradek-Hahn, K. Overview of Steam Oxidation Behaviour of Al Protective Oxide Precursor Coatings on P92. Surface Engineering 2018, 34 (1), 30−39. (35) Audigie, P.; Bizien, N.; Baraibar, I.; Rodriguez, S.; Pastor, A.; Hernandez, M.; Aguero, A. Aluminide Slurry Coatings for Protection of Ferritic Steel in Molten Nitrate Corrosion for Concentrated Solar Power Technology. 22nd International Conference on Concentrating Solar Power and Chemical Energy Systems (SOLARPACES), 2017 Oct 11−14, 2016; Masdar Inst. Sci. & Technol.: Abu Dhabi, UAE, 2017. (36) Agüero, A.; Audigié, P.; Rodríguez, S.; Encinas-Sánchez, V.; de Miguel, M. T.; Pérez, F. J. Protective Coatings for High Temperature Molten Salt Heat Storage Systems in Solar Concentration Power Plants. AIP Conference Proceedings; AIP Publishing: 2018; Vol. 2033 (1). (37) Gutierrez, M.; Illana, A.; Bahillo, A.; Benito, M. J.; Garcia Martin, G.; Perez, F.J.; Agüero, A. Comparison Between Pilot and Lab Scale Testing of Aluminide Coated and Uncoated Ferritic Steels under Oxy-Fuel and Coal/Thistle Co-Firing Conditions. Surface & Coatings Technology 2022, 450, No. 128982. (38) Canovic, S.; Engkvist, J.; Liu, F.; Lai, H.; Gotlind, H.; Hellstrom, K.; Svensson, J. E.; Johansson, L. G.; Olsson, M.; Halvarsson, M. Microstructural Investigation of the Initial Oxidation of the FeCrAlRE Alloy Kanthal AF in Dry and Wet O2 at 600 and 800°C. J. Electrochem. Soc. 2010, 157 (6), C223−C230. (39) Phother-Simon, J.; Hanif, I.; Jonsson, T.; Liske, J. HighTemperature Corrosion of P91/T91, 304L, Sanicro 28 and Inconel 625 Exposed at 600 °C under Continuous KCl Deposition. Fuel 2024, 357, No. 130012. (40) Larsson, E.; Liske, J.; Persdotter, A.; Jonsson, T.; Svensson, J. E.; Johansson, L. G. The Influence of KCl and HCl on the High Temperature Oxidation of a Fe-2.25Cr-1Mo Steel at 400 °C. Oxidation of Metals 2020, 93 (1−2), 29−52. (41) Israelsson, N.; Unocic, K. A.; Hellstrom, K.; Svensson, J. E.; Johansson, L. G. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl. Oxidation of Metals 2015, 84 (3−4), 269−290. (42) Park, H. K.; Park, K. Y.; Jung, K. Y. Alumina-Precursor Nanoparticles Prepared by Partial Hydrolysis of AlCl3 Vapor in Tubular Flow Reactor: Effect of Hydrolysis Conditions on Particle Size Distribution. Ind. Eng. Chem. Res. 2014, 53 (25), 10372−10379.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© The Authors 2024
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectα-Al2O3
dc.subjectBiomass-fired power plants
dc.subjectCoatings
dc.subjectIron aluminide
dc.subjectFerritic steels
dc.subjectHigh-temperature corrosion
dc.titleRapid α-Al2O3 Growth on an Iron Aluminide Coating at 600 °C in the Presence of O2, H2O, and KCl
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumber815147
oaire.awardNumberPID2020-115866RB-C21
oaire.awardTitleBELENUS 815147
oaire.awardTitleDESARROLLO Y OPTIMIZACION DE RECUBRIMIENTOS RESISTENTES A LA CORROSION A ALTA TEMPERATURA EN PLANTAS TERMO-SOLARES CON SALES FUNDIDAS Y CO2 SUPERCRITICO
oaire.awardURIhttps://digitalpro.inta.es/handle/123456789/1375
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1641
relation.isAuthorOfPublicatione9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isAuthorOfPublication686217e1-1771-46e8-a536-1fd94a7bdec8
relation.isAuthorOfPublicationa6be277e-0b0c-4412-802d-b754ed778a1a
relation.isAuthorOfPublication248a98b0-f596-43a5-a1af-e90b84039769
relation.isAuthorOfPublicationa43a7c57-08f7-45ef-a4f5-eace59344674
relation.isAuthorOfPublication.latestForDiscoverye9bb07d6-3bc5-49b1-8063-44e63da908c2
relation.isProjectOfPublication96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5
relation.isProjectOfPublication946e06ef-cf47-4df4-846a-0adce05dd04a
relation.isProjectOfPublication.latestForDiscovery96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Rapid α-Al2O3 Growth on an Iron Aluminide Coating at 600 °C in the Presence of O2, H2O, and KCl.pdf
Tamaño:
14.91 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: