Publicación: Aluminide Coatings by Means of Slurry Application: A Low Cost, Versatile and Simple Technology
| dc.contributor.author | Agüero, Alina | |
| dc.contributor.author | Audigié, Pauline | |
| dc.contributor.author | Lorente Sánchez, Cristina | |
| dc.contributor.author | Gutiérrez del Olmo, Marcos | |
| dc.contributor.author | Mora, Julio | |
| dc.contributor.author | Sergio, Rodríguez Catela | |
| dc.contributor.funder | European Commission | |
| dc.contributor.funder | Agencia Estatal de Investigación (España) | |
| dc.date.accessioned | 2026-01-21T11:25:17Z | |
| dc.date.available | 2026-01-21T11:25:17Z | |
| dc.date.issued | 2024-09-29 | |
| dc.description | The authors would like to thank all the suppliers of the base materials and acknowledge Mar Juez Lorenzo for her invaluable contribution to the FESEM images of coated A516. The authors also wish to dedicate the work on Mo-coated systems to Michel Pons from SIMaP, France, for initiating this study, providing the free-of-charge samples, and for the invaluable discussion related to this material. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | |
| dc.description.abstract | The present study focused on demonstrating the versatility of the slurry deposition technique to produce aluminide coatings to protect components from high-temperature corrosion in a broad temperature range, from 400 to 1400 °C. This is a simpler and low-cost coating technology used as an alternative to CVD and pack cementation, which also allows the coating of complex geometries and offers improved and simple repairability for a lot of industrial applications, along with avoiding the use of non-hazardous components. Slurry aluminide coatings from a proprietary water-based-Cr6+ free slurry were produced onto four different substrates: A516 carbon steel, 310H AC austenitic steel, Ti6246 Ti-based alloy and TZM, a Mo-based alloy. The resulting coatings were thoroughly characterised by FESEM and XRD, mainly so that the identification of microstructures and appropriate phases was reported for each coating. The importance of surface preparation and heat treatment as key parameters for the coating final microstructures was also evidenced, and how those parameters can be optimised to obtain stable intermetallic phases rich in Al to sustain the formation of a protective Al2O3 oxide scale. These coating systems have applications in diverse industrial environments in which high-temperature corrosion limits the lifetime of the components. | |
| dc.description.peerreviewed | Peerreview | |
| dc.description.sponsorship | Part of this work was funded by the Spanish Ministry of Sciences and Innovation and the “Agencia Estatal de Investigación” through the Spanish national project COCO”: Ref: PID2020- 115866RB-C21/AEI/10.13039/501100011033 as well as by the European Commission through the project BELENUS GA nº815147. | |
| dc.identifier.citation | Coatings 14(10): 1243 | |
| dc.identifier.doi | 10.3390/coatings14101243 | |
| dc.identifier.e-issn | 2079-6412 | |
| dc.identifier.other | https://www.mdpi.com/2079-6412/14/10/1243 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12666/1642 | |
| dc.language.iso | eng | |
| dc.publisher | MPDI | |
| dc.relation | BELENUS 815147 | |
| dc.relation | DESARROLLO Y OPTIMIZACION DE RECUBRIMIENTOS RESISTENTES A LA CORROSION A ALTA TEMPERATURA EN PLANTAS TERMO-SOLARES CON SALES FUNDIDAS Y CO2 SUPERCRITICO | |
| dc.relation.isreferencedby | 1. Zhang, Y. Aluminide Coatings for Power-Generation Applications; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2003. 2. Grilli, M.L.; Valerini, D.; Slobozeanu, A.E.; Postolnyi, B.O.; Balos, S.; Rizzo, A.; Piticescu, R.R. Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications. Materialsed 2021, 14, 1656. [CrossRef] [PubMed] 3. Pint, B.A.; Zhang, Y.; Walker, L.R.; Wright, I.G. Long-term performance of aluminide coatings on Fe-base alloys. Surf. Coat. Technol. 2007, 202, 637–642. [CrossRef] 4. Dosta, S.; Betancor, L.; Barreneche, C. Overview of surface engineering technology to improve the energy efficiency in concentrated solar power (CSP) plants. Sol. Energy Mater. Sol. Cells 2024, 277, 113090. [CrossRef] 5. Goral, M.; Swadzba, L.; Moskal, G.; Jarczyk, G.; Aguilar, J. Diffusion aluminide coatings for TiAl intermetallic turbine blades. Intermetallics 2011, 19, 744–747. [CrossRef] 6. Zeng, S.; Li, F. Research Status of Aluminum Base Coating on Titanium Alloy. Coatings 2023, 13, 1525. [CrossRef] 7. Pint, B.A.; Zhang, Y. Performance of Al-rich oxidation resistant coatings for Fe-base alloys. Mater. Corros. 2011, 62, 549–560. [CrossRef] 8. Deevi, S.C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog. Mater. Sci. 2021, 118, 100769. [CrossRef] 9. Goward, G.W.; Boone, D.H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid. Met. 1971, 3, 475–495. [CrossRef] 10. Nicholls, J. Advances in coating design for high-performance gas turbines. Mrs Bull. 2003, 28, 659–670. [CrossRef] 11. Ren, W.; Li, Q.; Song, J.; Xiao, C.; Xu, Z.; He, L.; Cao, C. Oxidation and microstructure evolution of cobalt aluminide coatings on directionally solidified superalloys during long term exposure at 1000 ◦C. Mater. Res. Innov. 2014, 18 (Suppl. S4), S4-945–S944-951. [CrossRef] 12. Feng, K.; Li, M.; Chen, M.; Li, Z.; Sha, J.; Zhou, C. Cyclic oxidation behavior of Al-Si coating on new γ′-strengthened cobalt-based superalloy: Experimental study and first-principles calculation. Corros. Sci. 2021, 185, 109422. [CrossRef] 13. Choi, K.; Yang, W.; Baik, K.-H.; Kim, Y.; Lee, S.; Park, J.S. Growth Kinetics and Isothermal Oxidation Behavior of Aluminide Pack Coatings on a Multiphase Mo–Si–B Alloy. Oxid. Met. 2019, 92, 423–437. [CrossRef] 14. Karpe, B.; Prijatelj, K.; Bizjak, M.; Kosec, T. Corrosion properties of aluminized 16Mo3 steel. J. Min. Metall. Sect. B-Metall. 2023, 59, 91–100. [CrossRef] 15. Filipovic, J.; Beck, K.; Kontermann, C.; Galetz, M.; Oechsner, M. Mechanical Characterization Potentials of Aluminide Diffusion Coatings on Molybdenum Substrates. Adv. Eng. Mater. 2024, 26, 2302027. [CrossRef] 16. Pomeroy, M.J. Coatings for gas turbine materials and long term stability issues. Mater. Des. 2005, 26, 223–231. [CrossRef] 17. Audigié, P.; Put, A.R.-V.; Malié, A.; Monceau, D. High-temperature cyclic oxidation behaviour of Pt-rich γ-γ’ coatings. Part I: Oxidation kinetics of coated AM1 systems after very long-term exposure at 1100 ◦C. Corros. Sci. 2018, 144, 127–135. [CrossRef] 18. Guo, L.; He, W.; Chen, W.; Xue, Z.; He, J.; Guo, Y.; Wu, Y.; Gao, L.; Li, D.; Zhang, Z.; et al. Progress on high-temperature protective coatings for aero-engines. Surf. Sci. Technol. 2023, 1, 6. [CrossRef] 19. Agüero, A.; Gutiérrez, M.; Korcakova, L.; Nguyen, T.T.M.; Hinnemann, B.; Saadi, S. Metal Dusting Protective Coatings. A Literature Review. Oxid. Met. 2011, 76, 23–42. [CrossRef] 20. Agüero, A.; Baraibar, I.; Muelas, R.; Oskay, C.; Galetz, M.; Korner, E. Analysis of an aluminide coating on austenitic steel 800HT exposed to metal dusting conditions: Lessons from an industrial hydrogen production plant. Int. J. Press. Vessel. Pip. 2020, 186, 104129. [CrossRef] 21. Madloch, S.; Galetz, M.C. Microstructural evolution of germanium modified AlSi-slurry coatings on alloy 600 at 620◦C in metal dusting environment. Surf. Coat. Technol. 2017, 315, 335–341. [CrossRef] 22. Boulesteix, C.; Pedraza, F.; Proy, M.; Lasanta, I.; de Miguel, T.; Illana, A.; Pérez, F.J. Steam Oxidation Resistance of Slurry Aluminum and Aluminum/Silicon Coatings on Steel for Ultrasupercritical Steam Turbines. Oxid. Met. 2017, 87, 469–479. [CrossRef] 23. Agüero, A.; Baraibar, I.; Gutierrez, M.; Tuurna, S.; Toivonen, A.; Pennila, S.; Auerkari, P. Steam Oxidation of Aluminide-Coated and Uncoated TP347HFG Stainless Steel under Atmospheric and Ultra-Supercritical Steam Conditions at 700 ◦C. Coatings 2020, 10, 839. [CrossRef] 24. Agüero, A.; Audigié, P.; Rodríguez, S.; Encinas-Sánchez, V.; de Miguel, M.T.; Pérez, F.J. Protective coatings for high temperature molten salt heat storage systems in solar concentration power plants. AIP Conf. Proc. 2018, 2033, 090001. 25. Audigie, P.; Encinas-Sanchez, V.; Rodriguez, S.; Perez, F.J.; Agüero, A. High temperature corrosion beneath carbonate melts of aluminide coatings for CSP application. Sol. Energy Mater. Sol. Cells 2020, 210, 110514. [CrossRef] 26. Meißner, T.M.; Oskay, C.; Bonk, A.; Grégoire, B.; Donchev, A.; Solimani, A.; Galetz, M.C. Improving the corrosion resistance of ferritic-martensitic steels at 600 ◦C in molten solar salt via diffusion coatings. Sol. Energy Mater. Sol. Cells 2021, 227, 111105. [CrossRef] 27. Kochmanska, A. Aluminide coatings on Inconel 617 obtained by slurry method with inorganic binder. J. Achiev. Mater. Manuf. Eng. 2017, 2, 49–55. [CrossRef] 28. Berry, D.; Meelu, M.C.; McMordie, B.G.; Kircher, T.A. Enhancing Performance of Silicon-Modified Slurry Aluminides on Turbine Components Operating in Marine Environments. In Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, TX, USA, 5–8 June 1995. 29. Kircher, T.A.; McMordie, B.G.; McCarter, A. Performance of a silicon-modified aluminide coating in high temperature hot corrosion test conditions. Surf. Coat. Technol. 1994, 68–69, 32-37. [CrossRef] 30. Agueero, A.; Gutierrez, M.; Muelas, R.; Spiradek-Hahn, K. Overview of steam oxidation behaviour of Al protective oxide precursor coatings on P92. Surf. Eng. 2018, 34, 30–39. [CrossRef] 31. Kochma ´nska, A.; Kochma ´nski, P. Aluminide Protective Coatings Obtained by Slurry Method. Mater. Sci. Forum 2014, 782, 590–593. [CrossRef] 32. Agüero, A.; Østergård, M.J.L.; Hansson, A.N.; Gutierrez, M. Thermal cyclic resistance and long term inter-diffusion properties of slurry aluminide coatings modified with Si. Results Surf. Interfaces 2022, 6, 100042. [CrossRef] 33. Das, D.K.; Trivedi, S.P. Microstructure of diffusion aluminide coatings on Ti-base alloy IMI-834 and their cyclic oxidation behaviour at 650 ◦C. Mater. Sci. Eng. A 2004, 367, 225–233 [CrossRef] 34. Kochma´nska, A.E.; Jarlaczy´nska, A.; Baranowska, J. Formation of Silicide and Silicide-Aluminide Coatings on Molybdenum Alloy during Slurry Cementation Process: Influence of Slurry Volume. Materials 2021, 14, 6940. [CrossRef] [PubMed] 35. Agüero, A.; Audigié, P.; Rodríguez, S. 10,000 h molten salt corrosion testing on IN617, uncoated and aluminide ferritic steels at 580 ◦C. AIP Conf. Proc. 2020, 2303, 150002. 36. Wang, W.; Zhu, Z.; Yang, L.; Lu, J.; Huang, J.; Tan, J.; Kuang, W. Superior corrosion resistance of a slurry FeAl coating on 316LN stainless steel in 550 ◦C liquid lead-bismuth eutectic. Corros. Sci. 2024, 227, 111757. [CrossRef] 37. Pedraza, F.; Boulesteix, C.; Proy, M.; Lasanta, I.; de Miguel, T.; Illana, A.; Perez, F.J. Behavior of Slurry Aluminized Austenitic Stainless Steels under Steam at 650 and 700 ◦C. Oxid. Met. 2017, 87, 443–454. [CrossRef] 38. ArcelorMittal Asturias en Avilés | ArcelorMittal España. Available online:https://spain.arcelormittal.com/ (accessed on 4 September 2024). 39. Alleima® 7RE10—Alleima. Available online: https://www.alleima.com/en/products/ (accessed on 4 September 2024). 40. 6246—Aubert & Duval English. Available online: www.aubertduval.com (accessed on 4 September 2024). 41. Molybdenum Alloys | Goodfellow—TZM Molybdenum Alloy | Material: TZM Molybdenum Alloy. Available online: https:// www.fonlinkmetal.com/products/molybdenum/tzm_alloy_and_piercing_plug.htmlgad_source=1&gclid=EAIaIQobChMI1 ezQy77fiAMVpqpmAh2PFTD9EAAYAyAAEgJqXvD_BwE (accessed on 4 September 2024). 42. Gutierrez, M.; Illana, A.; Bahillo, A.; Benito, M.J.; Garcia-Martin, G.; Perez, F.J.; Aguero, A. Comparison between pilot and lab scale testing of aluminide coated and uncoated ferritic steels under oxy-fuel and coal/thistle co-firing conditions. Surf. Coat. Technol. 2022, 450, 128982. [CrossRef] 43. Palacios, A.; Navarro, M.E.; Jiang, Z.; Avila, A.; Qiao, G.; Mura, E.; Ding, Y. High-temperature corrosion behaviour of metal alloys in commercial molten salts. Sol. Energy 2020, 201, 437–452. [CrossRef] 44. Applicability & Allowable Stress of ASTM A516 Gr.70. Available online: www.metalspiping.com (accessed on 3 August 2022). 45. Ladkany, S.G.; Culbreth, W.; Loyd, N. Molten Salts and Applications II: 565 ◦C Molten Salt Solar Energy Storage Design, Corrosion, and Insulation. J. Energy Power Eng. 2018, 12, 517–532. 46. Agüero, A.; Spiradek, K.; Höfinger, S.; Gutiérrez, M.; Muelas, R. Microstructural Evolution of Slurry Fe Aluminide Coatings during High Temperature Steam Oxidation. Mater. Sci. Forum 2008, 595–598, 251–259. [CrossRef] 47. Du, H.; Tan, N.; Fan, L.; Zhuang, J.; Qiu, Z.; Lei, Y. Formation Mechanism of Aluminide Diffusion Coatings on Ti and Ti-6Al-4V Alloy at the Early Stages of Deposition by Pack Cementation. Materialsed 2019, 12, 3097.[CrossRef] 48. Madhavan, N.; Brooks, G.A.; Rhamdhani, M.A.; Rout, B.K.; Schrama, F.N.H.; Overbosch, A. General mass balance for oxygen steelmaking. Ironmak. Steelmak. 2021, 48, 40–54. [CrossRef] 49. Acero inoxidable 310/310S/310H, aleación 310 (UNS S31000/S31008/S31009) (allianzsteel.com). Available online: https://es. allianzsteel.com/serve/stainless-steel-310-310s-310h.html (accessed on 1 September 2024). 50. Audigié, P.; Rodríguez, S.; Agüero, A. Improved Corrosion Resistance of Slurry Coated Austenitic Steel in Molten Carbonates Doped with Nanoparticles for Thermal Energy Storage Technologies. Poster Commun. 2024. 51. Chumak, I.; Richter, K.W.; Ipser, H. The Fe–Ni–Al phase diagram in the Al-rich (>50at.% Al) corner. Intermetallics 2007, 15, 1416–1424. [CrossRef] 52. Kochma´nska, A.E. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel. Adv. Mater. Sci. Eng. 2018, 2018, 5473079. [CrossRef] 53. Boyer, R.R. Titanium for aerospace: Rationale and applications. Adv. Perform. Mater. 1995, 2, 349–368. [CrossRef] 54. Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [CrossRef] 55. Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium alloys for aerospace applications. Adv. Eng. Mater. 2003, 5, 419–427. [CrossRef] 56. Najafizadeh, M.; Yazdi, S.; Bozorg, M.; Ghasempour-Mouziraji, M.; Hosseinzadeh, M.; Zarrabian, M.; Cavaliere, P. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. [CrossRef] 57. Berthaud, M.; Popa, I.; Chassagnon, R.; Heintz, O.; Lavková, J.; Chevalier, S. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 ◦C: Effect of oxygen dissolution on lattice parameters. Corros. Sci. 2020, 164, 108049. [CrossRef] 58. Školáková, A.; Salvetr, P.; Leitner, J.; Lovaši, T.; Novák, P. Formation of Phases in Reactively Sintered TiAl3 Alloy. Molecules 2020, 25, 1912. [CrossRef] 59. Shen, Z.; Zhang, Y.; Yu, X. Interfacial microstructure evolution mechanism of high temperature oxidation-resistant Al-based coating on Ti alloy surface. Mater. Res. Express 2019, 6, 086472. [CrossRef] 60. Smialek, J.L. Oxidation behaviour of TiAl3 coatings and alloys. Corros. Sci. 1993, 35, 1199–1208. [CrossRef] 61. Yuan, M.; Wang, Z.; Yao, Y.; Li, L. Finite element analysis of thermal stresses in Ti-Al3Ti metal-intermetallic laminated composites. Results Phys. 2019, 15, 102706. [CrossRef] 62. Wang, J.; Kong, L.; Li, T.; Xiong, T. A novel TiAl3/Al2O3 composite coating on γ-TiAl alloy and evaluating the oxidation performance. Appl. Surf. Sci. 2016, 361, 90–94. [CrossRef] 63. Sharma, I.G.; Chakraborty, S.P.; Suri, A.K. Preparation of TZM alloy by aluminothermic smelting and its characterization. J. Alloys Compd. 2005, 393, 122–127. [CrossRef] 64. Smolik, G.R.; Petti, D.A.; Schuetz, S.T. Oxidation and volatilization of TZM alloy in air. J. Nucl. Mater. 2000, 283–287, 1458–1462. [CrossRef] 65. Alam, M.Z.; Venkataraman, B.; Sarma, B.; Das, D.K. MoSi2 coating on Mo substrate for short term oxidation protection in air. J. Alloys Compd. 2009, 487, 335–340. [CrossRef] 66. Agüero, A.; Muelas, R.; Pastor, A.; Osgerby, S. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components. Surf. Coat. Technol. 2005, 200, 1219–1224. [CrossRef] | |
| dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject | Slurry aluminide coatings | |
| dc.subject | Interdiffusion | |
| dc.subject | Carbon steels | |
| dc.subject | Austenitics steels | |
| dc.subject | Titanium alloys | |
| dc.subject | Molybdenum alloys | |
| dc.title | Aluminide Coatings by Means of Slurry Application: A Low Cost, Versatile and Simple Technology | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.awardNumber | 815147 | |
| oaire.awardNumber | PID2020-115866RB-C21 | |
| oaire.awardTitle | BELENUS 815147 | |
| oaire.awardTitle | DESARROLLO Y OPTIMIZACION DE RECUBRIMIENTOS RESISTENTES A LA CORROSION A ALTA TEMPERATURA EN PLANTAS TERMO-SOLARES CON SALES FUNDIDAS Y CO2 SUPERCRITICO | |
| oaire.awardURI | https://digitalpro.inta.es/handle/123456789/1375 | |
| oaire.awardURI | https://hdl.handle.net/20.500.12666/1641 | |
| relation.isAuthorOfPublication | e9bb07d6-3bc5-49b1-8063-44e63da908c2 | |
| relation.isAuthorOfPublication | 686217e1-1771-46e8-a536-1fd94a7bdec8 | |
| relation.isAuthorOfPublication | 67b11350-fea1-4780-a1b6-6ada700b9b6d | |
| relation.isAuthorOfPublication | 248a98b0-f596-43a5-a1af-e90b84039769 | |
| relation.isAuthorOfPublication | 95ce87c9-f319-4659-8c25-40001a04754c | |
| relation.isAuthorOfPublication | a6be277e-0b0c-4412-802d-b754ed778a1a | |
| relation.isAuthorOfPublication.latestForDiscovery | e9bb07d6-3bc5-49b1-8063-44e63da908c2 | |
| relation.isProjectOfPublication | 96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5 | |
| relation.isProjectOfPublication | 946e06ef-cf47-4df4-846a-0adce05dd04a | |
| relation.isProjectOfPublication.latestForDiscovery | 96c8cff1-0e9f-45a1-82d2-f4f9058cb8e5 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Aluminide Coatings by Means of Slurry Application - A Low Cost, Versatile and Simple Technology.pdf
- Tamaño:
- 5.41 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 4.77 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:










