Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12666/811
Título : Complex permittivity estimation by bio-inspired algorithms for target identification improvement
Autor : Poyatos Martínez, D.
Escot Bocanegra, D.
Montiel, I.
Olmeda, I.
Palabras clave : NCTI;ANN;GA;PSO;Permittivity;Permeability;Free-space measurements
Fecha de publicación : 14-may-2007
Editorial : Springer Link
DOI: 10.1007/978-3-540-73055-2_25
Versión del Editor: https://link.springer.com/chapter/10.1007/978-3-540-73055-2_25
Citación : Nature inspired Problem Solving Methods in Knowledge Engineering 4528: 1029
Resumen : Identification of aircrafts by means of radar when no cooperation exists (Non-Cooperative Target Identification, NCTI) tends to be based on simulations. To improve them, and hence the probability of correct identification, right values of permittivity and permeability need to be used. This paper describes a method for the estimation of the electromagnetic properties of materials as a part of the NCTI problem. Different heuristic optimization algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), as well as other approaches like Artificial Neural Networks (ANN), are applied to the reflection coefficient obtained via free-space measurements in an anechoic chamber. Prior to the comparison with real samples, artificial synthetic materials are generated to test the performance of these bio-inspired algorithms.
URI : http://hdl.handle.net/20.500.12666/811
ISBN : 978-3-540-73054-5
Aparece en las colecciones: (Espacio) Artículos
(Espacio) Comunicaciones de Congresos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
acceso-restringido.pdf221,73 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de Digital.INTA están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.