(Aeronáutica) Artículos
URI permanente para esta colecciónhttps://digitalpro.inta.es/handle/20.500.12666/48
Buscar
Examinando (Aeronáutica) Artículos por Materia "Aerodynamics"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Aerodynamic investigation of a morphing wing for micro air vehicle by means of PIV(MDPI, 2020-10) Bardera, Rafael; Rodríguez Sevillano, A.; García-Magariño, Adelaida; Ministerio de Defensa; García Magariño, A. [0000-0002-6039-8407]A wind tunnel tests campaign has been conducted to investigate the aerodynamic flow around a wing morphing to be used in a micro air vehicle. Non-intrusive whole field measurements were obtained by using PIV, in order to compare the velocity and turbulence intensity maps for the modified and the original version of an adaptive wing designed to be used in a micro air vehicle. Four sections and six angles of attack have been tested. Due to the low aspect ratio of the wing and the low Reynold number tested of 6.4 × 104, the influence of the 3D effects has been proved to be important. At high angles of attack, the modified model prevented the detachment of the stream, increased the lift of the wing and reduced the turbulence intensity level on the upper surface of the airfoil and in the wake.Publicación Restringido Analytic adjoint solution for incompressible potential flows(AIP Publishing, 2025-06-10) Lozano, Carlos; Ponsin Roca, Jorge; Instituto Nacional de Técnica Aeroespacial (INTA)We obtain the analytic adjoint solution for two-dimensional incompressible potential flow for a cost function measuring aerodynamic force using the connection of the adjoint approach to Green's functions and also by establishing and exploiting its relation to the adjoint incompressible Euler equations. By comparison with the analytic solution, it is shown that the naïve approach based on solving Laplace's equation for the adjoint variables can be ill-defined. The analysis of the boundary behavior of the analytic solution is used to discuss the proper formulation of the adjoint problem as well as the mechanism for incorporating the Kutta condition in the adjoint formulation.Publicación Acceso Abierto Identification of kite aerodynamic characteristics using the estimation before modeling technique(Wiley Online Library, 2021-01-06) Borobia Moreno, R.; Ramiro Rebollo, D.; Schmehl, R.; Sánchez Arriaga, G.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Borobia Moreno, R. [0000-0003-4435-5113]; Schmehl, R. [0000-0002-4112-841X]; Sánchez Arriaga, G. [0000-0002-8122-4051]The aerodynamic characteristics of a leading edge inflatable (LEI) kite and a rigid-framed delta (RFD) kite were investigated. Flight data were recorded by using an experimental setup that includes an inertial measurement unit, a GPS, a magnetometer, and a multi-hole Pitot tube onboard the kites, load cells at every tether, and a wind station that measures the velocity and heading angle of the wind. These data were used to feed a flight path reconstruction algorithm that estimated the full state vector of the kite. Since the latter includes the aerodynamic force and moment about the center of mass of the kite, quantitative information about the aerodynamic characteristics of the kites was obtained. Due to limitation of the experimental setup, the LEI kite flew most of the time in post-stall conditions, which resulted in a poor maneuverability and data acquisition. This assumption was corroborated by a particular maneuver where the lift coefficient decreased from 1 to 0.4, while its angle of attack increased from 35° to 50°. On the contrary, abundant flight data were obtained for the RFD kite during more than 10 figure-eight maneuvers. Although the angle of attack was high, between 20° and 40°, the kite did not reach its maximum lift coefficient. High tether tensions and a good maneuverability were achieved. Statistical analysis of the behavior of the lift, drag, and pitch moment coefficients as a function of the angle of attack and the sideslip angle allowed to identify some basic aerodynamic parameters of the kite.Publicación Acceso Abierto Wind Tunnel Balance Measurements of Bioinspired Tails for a Fixed Wing MAV(Multidisciplinary Digital Publishing Institute (MDPI), 2024-01-10) Bardera, Rafael; Rodríguez Sevillano, A.; Barroso, Estela; Matías García, J. C.; Sor, Suthyvann; Instituto Nacional de Técnica Aeroespacial (INTA)"Bird tails play a significant role in aerodynamics and stability during flight. This paper investigates the use of bioinspired horizontal stabilizers for Micro Air Vehicles (MAVs) with Zimmerman wing-body geometry. Five configurations of bioinspired horizontal tabilizers are presented. Then, 3-component external balance force measurements of each horizontal stabilizer are performed in the wind tunnel. The Squared-Fan-Shaped Horizontal Stabilizer (HSF-tail) is selected as the optimal horizontal stabilizer that provides the highest aerodynamic efficiency during cruise flight while maintaining high longitudinal stability on the vehicle. The integration of the HSF-tail increases the aerodynamic efficiency by more than 6% up to a maximum of 17% compared to the other alternatives while maintaining the lowest aerodynamic drag value during the cruise phase. Furthermore, balancemeasurements to analyze the influence of the HSF-tail deflection on the aerodynamic coefficients are conducted, resulting in increased lift force and reduced aerodynamic drag with negative tail deflections. Lastly, the experimental data is validated with CFD-RANS steady simulations for low angles of attack, obtaining a relative difference on the measurement around 5% for the aerodynamic drag coefficient and around 10% for the lift coefficient during the cruise flight that demonstrates a high degree of accuracy in the aerodynamic coefficients obtained by external balance in the wind tunnel. This work represents a novel approach through the implementation of a horizontal tabilizer inspired by the structure of the tails of birds that is expected to yield significant advancements in both stability and aerodynamic efficiency, with the potential to revolutionize MAV technology."










